On Calculi for Context-Aware Coordination

  • Pietro Braione
  • Gian Pietro Picco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2949)


Modern distributed computing demands unprecedented levels of dynamicity and reconfiguration. Mobile computing, peer-to-peer networks, computational grids, multi-agent systems, are examples of domains exhibiting a continuously changing system configuration. In these settings, the context where computation occurs is not only dynamically changing, but also affecting the components’ behavior in a fundamental way, by enabling or inhibiting some of their actions.

This paper is a first step in laying the formal foundation for a process calculi specification style that: i) fosters a coordination approach by sharply separating the process behavior from the computational context defined by system changes; ii) enables the specifier to define her notion of context and the rules governing how it affects the application process behavior.


Mobile Agent Elementary Context Congruence Class Tuple Space Destination Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berry, G., Boudol, G.: The Chemical Abstract Machine. Theoretical Computer Science 96, 217–248 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Busi, N., Rowstron, A., Zavattaro, G.: State- and event-based reactive programming in shared dataspaces. In: Arbab, F., Talcott, C. (eds.) COORDINATION 2002. LNCS, vol. 2315, p. 111. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Cardelli, L., Gordon, A.D.: Mobile ambients. In: Nivat, M. (ed.) FOSSACS 1998. LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Groote, J.F.: Transition system specifications with negative premises. Theoretical Computer Science 118(2), 263–299 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Groote, J.F., Vaandrager, F.W.: Structured operational semantics and bisimulation as a congruence. Information and Computation 100(2), 202–260 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoretical Computer Science 96(1), 73–155 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Murphy, A.L., Picco, G.P., Roman, G.-C.: Lime: A Middleware for Physical and Logical Mobility. In: Golshani, F., et al. (eds.) Proc. of the 21st Int. Conf. on Distributed Computing Systems (ICDCS-21), pp. 524–533 (May 2001)Google Scholar
  9. 9.
    Roman, G.-C., Murphy, A.L., Picco, G.P.: Coordination and Mobility. In: Omicini, A., et al. (eds.) Coordination of Internet Agents: Models, Technologies, and Applications, pp. 254–273. Springer, Heidelberg (2000)Google Scholar
  10. 10.
    Sassone, V., Sobociński, P.: Deriving Bisimulation Congruences: A 2- Categorical Approach. In: Nestmann, U., Panangaden, P. (eds.) Proc. of the 9th Int. Wksp. on Expressiveness in Concurrency (EXPRESS 2002). Electronic Notes in Theoretical Computer Science, vol. 68. Springer, Heidelberg (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Pietro Braione
    • 1
  • Gian Pietro Picco
    • 1
  1. 1.Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilanoItaly

Personalised recommendations