Advertisement

Probabilistic KLAIM

  • Alessandra Di Pierro
  • Chris Hankin
  • Herbert Wiklicky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2949)

Abstract

We introduce a probabilistic extension of KLAIM, where the behaviour of networks and individual nodes is determined by a probabilistic scheduler for processes and probabilistic allocation environments which describe the logical neighbourhood of each node. The resulting language has two variants which are modelled respectively as discrete and continuous time Markov processes. We suggest that Poisson processes are a natural probabilistic model for the coordination of discrete processes asynchronously communicating in continuous time and we use them to define the operational semantics of the continuous time variant. This framework allows for the implementation of networks with independent clocks on each site.

Keywords

Continuous Time Operational Semantic Global Transition Continuous Time Model Discrete Time Markov Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    De Nicola, R., Ferrari, G., Pugliese, R.: KLAIM: A kernel language for agents interaction and mobility. IEEE Transactions on Software Engineering 24, 315–330 (1998)CrossRefGoogle Scholar
  2. 2.
    Norris, J.: Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bause, F., Kritzinger, P.S.: Stochastic Petri Nets – An Introduction to the Theory, 2nd edn. Vieweg Verlag (2002)Google Scholar
  4. 4.
    Tijms, H.C.: Stochastic Models – An Algorithmic Approach. John Wiley & Sons, Chichester (1994)zbMATHGoogle Scholar
  5. 5.
    Di Pierro, A., Hankin, C., Wiklicky, H.: Analysing the propagation of computer viruses. Journal of Functional Programming (2003) (submitted)Google Scholar
  6. 6.
    Giacalone, A., Jou, C.C., Smolka, S.: Algebraic reasoning for probabilistic concurrent systems. In: Proceedings of the IFIP WG 2.2/2.3 Working Conference on Programming Concepts and Methods, pp. 443–458. North-Holland, Amsterdam (1990)Google Scholar
  7. 7.
    Jonsson, B., Yi, W., Larsen, K.: 11. In: Probabilistic Extentions of Process Algebras, pp. 685–710. Elsevier Science, Amsterdam (2001); see [17]Google Scholar
  8. 8.
    Di Pierro, A., Wiklicky, H.: Quantitative observables and averages in Probabilistic Concurrent Constraint Programming. In: Apt, K.R., et al. (eds.) Compulog Net WS 1999. LNCS (LNAI), vol. 1865, p. 212. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Hillston, J.: PEPA: Performance enhanced process algebra. Technical Report CSR-24-93, University of Edinburgh, Edinburgh, Scotland (1993)Google Scholar
  10. 10.
    Priami, C.: Stochastic π-calculus. Computer Journal 38, 578–589 (1995)CrossRefGoogle Scholar
  11. 11.
    Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)CrossRefzbMATHGoogle Scholar
  12. 12.
    Bernardo, M., Gorrieri, R.: A tutorial on EMPA: A theory of concurrent processes with nondeterminism, priorities, probabilities and time. Technical Report UBLCS-96-17, Department of Computer Science, University of Bologna (1997)Google Scholar
  13. 13.
    Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking with PRISM: A hybrid approach. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 52–66. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford University, Department of Computer Science (1998)Google Scholar
  15. 15.
    Di Pierro, A., Hankin, C., Wiklicky, H.: Approximate Non-Interference. Journal of Computer Security 12, 37–81 (2004)CrossRefGoogle Scholar
  16. 16.
    Aldini, A., Bravetti, M., Gorrieri, R.: A process algebraic approach for the analysis of probabilistic non-interference. Journal of Computer Security (2004)Google Scholar
  17. 17.
    Bergstra, J., Ponse, A., Smolka, S. (eds.): Handbook of Process Algebra. Elsevier Science, Amsterdam (2001)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Alessandra Di Pierro
    • 1
  • Chris Hankin
    • 2
  • Herbert Wiklicky
    • 2
  1. 1.Dipartimento di InformaticaUniversità di PisaItaly
  2. 2.Department of ComputingImperial College LondonUK

Personalised recommendations