Advertisement

A Distributed Simulation of Transition P Systems

  • Apostolos Syropoulos
  • Eleftherios G. Mamatas
  • Peter C. Allilomes
  • Konstantinos T. Sotiriades
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2933)

Abstract

P systems is a new model of computation, inspired by natural processes, that has a distributive nature. By exploring this distributive nature of P systems, we have built a purely distributive simulation of P systems. The simulation, whose implementation is described here, was programmed in the Java programming language and makes heavy use of its Remote Method Invocation protocol. The class of P systems that the simulator can accept is a subset of the NOP2(coo, tar) family of systems, which have the computational power of Turing machines. The paper concludes with some remarks concerning the usefulness of the simulation. In addition, there is a brief discussion of some ideas that can be used in the formulation of a foundation of distributive computing.

Keywords

P systems Natural computation Distributed Computing Java’s Remote Method Invocation Object-oriented programming Simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arroyo, F., Baranda, A.V., Castellanos, J., Luengo, C., Mingo, L.F.: Structures and Bio-language to Simulate Transition P Systems on Digital Computers. In: Calude, C.S., Pun, G., Rozenberg, G., Salomaa, A. (eds.) Multiset Processing. LNCS, vol. 2235, pp. 1–15. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Arroyo, F., Luengo, C., Baranda, A.V., de Mingo, L.F.: A Software Simulation of Transition P Systems in Haskell. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 19–32. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Ciobanu, G., Desai, R., Kumar, A.: Membrane Systems and Distributed Computing. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 187–202. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Ciobanu, G., Paraschiv, D.: A P System Simulator, Technical Report 17/01, Research Group on Mathematical Linguistics, Rovira i Virgili University, Tarragona, Spain (2001)Google Scholar
  5. 5.
    Malita, M.: Membrane Computing in Prolog. In: Pre-proceedings of the Workshop on Multiset Processing, CDMTCS TR 140, Curtea de Argeş, Romania, pp. 159–175. Univ. of Auckland (2000)Google Scholar
  6. 6.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 2nd edn. Springer, Berlin (1994)zbMATHGoogle Scholar
  7. 7.
    Păun, G.: Membrane Computing: An Introduction. Springer, Berlin (2002)zbMATHGoogle Scholar
  8. 8.
    Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing New Computing Paradigms. Springer, Berlin (1998)zbMATHGoogle Scholar
  9. 9.
    Syropoulos, A.: Mathematics of Multisets. In: Calude, C.S., Pun, G., Rozenberg, G., Salomaa, A. (eds.) Multiset Processing. LNCS, vol. 2235, pp. 347–358. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Wang, L., Wu, C.: Distributed Instruction Set Computer Srchitecture. IEEE Transactions on Computers 40(8), 915–934 (1991)CrossRefGoogle Scholar
  11. 11.
    Wilhelm, R., Alt, M., Martin, F., Raber, M.: Parallel Implementation of Functional Languages. In: Dam, M. (ed.) LOMAPS-WS 1996. LNCS, vol. 1192. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Apostolos Syropoulos
    • 1
  • Eleftherios G. Mamatas
    • 1
  • Peter C. Allilomes
    • 1
  • Konstantinos T. Sotiriades
    • 1
  1. 1.Research DivisionAraneous Internet ServicesXanthiGreece

Personalised recommendations