ω -P Automata with Communication Rules

  • Rudolf Freund
  • Marion Oswald
  • Ludwig Staiger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2933)


We introduce ω -P automata based on the model of P systems with membrane channels (see [8]) using only communication rules. We show that ω -P automata with only two membranes can simulate the computational power of usual (non-deterministic) ω -Turing machines. A very restricted variant of ω -P automata allows for the simulation of ω -finite automata in only one membrane.


Turing Machine Regular Language Membrane Channel Terminal Symbol Register Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cohen, R.S., Gold, A.Y.: ω-computations on Turing machines. Theoretical Computer Science 6, 1–23 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cohen, R.S., Gold, A.Y.: On the complexity of ω-type Turing acceptors. Theoretical Computer Science 10, 249–272 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Csuhaj-Varjú, E., Vaszil, G.: P automata or purely communicating accepting P systems. In: [15], pp. 219–233Google Scholar
  4. 4.
    Dassow, J., Păun, G.: On the power of membrane computing. Journal of Universal Computer Science 5(2), 33–49 (1999), MathSciNetGoogle Scholar
  5. 5.
    Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer, Berlin (1989)Google Scholar
  6. 6.
    Engelfriet, J., Hoogeboom, H.J.: X-automata on ω-words. Theoretical Computer Science 110(1), 1–51 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Freund, R., Oswald, M.: A short note on analysing P systems with antiport rules. EATCS Bulletin 78, 231–236 (2002)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Freund, R., Oswald, M.: P systems with activated/prohibited membrane channels. In: [15], pp. 261–269Google Scholar
  9. 9.
    Freund, R.: On the number of non-terminals in graph-controlled, programmed, and matrix grammars. In: Margenstern, M., Rogozhin, Y. (eds.) Proc. Conf. Universal Machines and Computations, Chişinău. Springer, Berlin (2001)Google Scholar
  10. 10.
    Minsky, M.L.: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)zbMATHGoogle Scholar
  11. 11.
    Păun, A., Păun, G.: The power of communication: P systems with symport/ antiport. New Generation Computing 20(3), 295–306 (2002)zbMATHCrossRefGoogle Scholar
  12. 12.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000),; and TUCS Research Report 208 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Păun, G.: Computing with membranes: an introduction. Bulletin EATCS 67, 139–152 (1999)zbMATHGoogle Scholar
  14. 14.
    Păun, G.: Membrane Computing: An Introduction. Springer, Berlin (2002)zbMATHGoogle Scholar
  15. 15.
    Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.): Membrane Computing 2002. LNCS, vol. 2597. Springer, Heidelberg (2002)Google Scholar
  16. 16.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Berlin (1997)zbMATHGoogle Scholar
  17. 17.
    Staiger, L.: ω-languages. In: [16], vol. 3, pp. 339–387Google Scholar
  18. 18.
    Wagner, K., Staiger, L.: Recursive ω-languages. In: Karpinski, M. (ed.) FCT 1977. LNCS, vol. 56, pp. 532–537. Springer, Heidelberg (1977)Google Scholar
  19. 19.
    The P Systems Web Page,

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Rudolf Freund
    • 1
  • Marion Oswald
    • 1
  • Ludwig Staiger
    • 2
  1. 1.Department of Computer ScienceTechnical University WienWienAustria
  2. 2.Computer Science InstituteMartin-Luther University Halle-WittenbergHalleGermany

Personalised recommendations