Advertisement

Fuzzy Unification and Argumentation for Well-Founded Semantics

  • Ralf Schweimeier
  • Michael Schroeder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2932)

Abstract

Argumentation as metaphor for logic programming semantics is a sound basis to define negotiating agents. If such agents operate in an open system, they have to be able to negotiate and argue efficiently in a goal-directed fashion and they have to deal with uncertain and vague knowledge. In this paper, we define an argumentation framework with fuzzy unification and reasoning for the well-founded semantics to handle uncertainty. In particular, we address three main problems: how to define a goal-directed top-down proof procedure for justified arguments, which is important for agents which have to respond in real-time; how to provide expressive knowledge representation including default and explicit negation and uncertainty, which is among others part of agent communication languages such as FIPA or KQML; how to deal with reasoning in open agent systems, where agents should be able to reason despite misunderstandings.

To deal with these problems, we introduce a basic argumentation framework and extend it to cope with fuzzy reasoning and fuzzy unification. For the latter case, we develop a corresponding sound and complete top-down proof procedure.

Keywords

Logic Program Logic Programming Edit Distance Fuzzy Reasoning Argumentation Framework 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bondarenko, A., Dung, P., Kowalski, R., Toni, F.: An Abstract, Argumentation-Theoretic Approach to Default Reasoning. Artificial Intelligence 93, 63–101 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Dung, P.M.: An Argumentation Semantics for Logic Programming with Explicit Negation. In: Proc. of the 10th International Conference on Logic Programming, pp. 616–630. MIT Press, Cambridge (1993)Google Scholar
  3. 3.
    Dung, P.M.: On the Acceptability of Arguments and Its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games. Artificial Intelligence 77, 321–357 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Prakken, H., Sartor, G.: Argument-Based Extended Logic Programming with Defeasible Priorities. Journal of Applied Non-Classical Logics 7, 25–75 (1997)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Kraus, S., Sycara, K., Evenchik, A.: Reaching Agreements through Argumentation: A Logical Model and Implementation. Artificial Intelligence 104, 1–69 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Parsons, S., Jennings, N.: Negotiation through Argumentation-a Preliminary Report. In: Proc. Second Int. Conf. on Multi-Agent Systems, Kyoto, Japan, pp. 267–274 (1996)Google Scholar
  7. 7.
    Sierra, C., Jennings, N., Noriega, P., Parsons, S.: A Framework for Argumentation-Based Negotiation. In: Rao, A., Singh, M.P., Wooldridge, M.J. (eds.) ATAL 1997. LNCS, vol. 1365, pp. 167–182. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Parsons, S., Sierra, C., Jennings, N.: Agents that Reason and Negotiate by Arguing. Journal of Logic and Computation 8, 261–292 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Sadri, F., Toni, F., Torroni, P.: Logic Agents, Dialogue, Negotiation - An Abductive Approach. In: Proceedings of the AISB Symposium on Information Agents for E-commerce (2001)Google Scholar
  10. 10.
    Torroni, P.: A Study on the Termination of Negotiation Dialogues. In: Proceedings of Autonomous Agents and Multi Agent Systems 2002, pp. 1223–1230. ACM Press, New York (2002)Google Scholar
  11. 11.
    Schroeder, M.: An Efficient Argumentation Framework for Negotiating Autonomous Agents. In: Garijo, F.J., Boman, M. (eds.) MAAMAW 1999. LNCS (LNAI), vol. 1647, Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Wagner, G.: Foundations of Knowledge Systems with Applications to Databases and Agents. Kluwer Academic Publishers, Dordrecht (1998)zbMATHGoogle Scholar
  13. 13.
    Schroeder, M., Wagner, G.: Vivid Agents: Theory, Architecture, and Applications. Journal of Applied Artificial Intelligence 14, 645–676 (2000)CrossRefGoogle Scholar
  14. 14.
    Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an Agent Communication Lanugage. In: Proceedings of the Third International Conference on Informati on and Knowledge Management (CIKM 1994), pp. 456–463. ACM Press, New York (1994)CrossRefGoogle Scholar
  15. 15.
    Chiariglione, L., et al.: SpecificationVersion 2.0. Technical Report, Foundations of Intelligent Physical Agents (1997), http://www.fipa.org
  16. 16.
    Nwana, H., Ndumu, D.: A Perspective on Software Agents Research. The Knowledge Engineering Review 14, 125–142 (1999)CrossRefGoogle Scholar
  17. 17.
    Alferes, J.J., Pereira, L.M.: Reasoning with Logic Programming. LNCS (LNAI), vol. 1111. Springer, Heidelberg (1996)Google Scholar
  18. 18.
    Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In: Kowalski, R.A., Bowen, K.A. (eds.) 5th International Conference on Logic Programming, pp. 1070–1080. MIT Press, Cambridge (1988)Google Scholar
  19. 19.
    Levenshtein, V.: Binary Codes Capable of Correcting Deletions, Insertions, and Reversals. Doklady Akademii nauk SSSR 163, 845–848 (1965) (in Russian); Also in Cybernetics and Control Theory 10(8), 707–710 (1996)MathSciNetGoogle Scholar
  20. 20.
    Codd, E.F.: A Relational Model of Data for Large Shared Data Banks. Communications of the ACM 13, 377–387 (1970)zbMATHCrossRefGoogle Scholar
  21. 21.
    Wagner, G.: Negation in Fuzzy and Possibilistic Logic Programs. Logic Programming and Soft Computing. Research Studies Press, Hetfordshire (1998)Google Scholar
  22. 22.
    Gelfond, M., Lifschitz, V.: Logic Programs with Classical Negation. In: Proc. of ICLP 1990, pp. 579–597. MIT Press, Cambridge (1990)Google Scholar
  23. 23.
    Schweimeier, R., Schroeder, M.: A Parametrised Hierarchy of Argumentation Semantics for Extended Logic Programming and Its Application to the Well-Founded Semantics. Theory and Practice of Logic Programming (2004) (to appear)Google Scholar
  24. 24.
    Sterling, L., Shapiro, E.: The Art of Prolog. MIT Press, Cambridge (1986)zbMATHGoogle Scholar
  25. 25.
    van Gelder, A., Ross, K.A., Schlipf, J.S.: The Well-Founded Semantics for General Logic Programs. Journal of the ACM 38, 620–650 (1991)zbMATHGoogle Scholar
  26. 26.
    Chesñevar, C.I., Maguitman, A.G., Loui, R.P.: Logical Models of Argument. ACM Computing Surveys 32, 337–383 (2000)CrossRefGoogle Scholar
  27. 27.
    Tarski, A.: A Lattice-Theoretical Fixpoint Theorem and Its Applications. Pacific Journal of Mathematics 5, 285–309 (1955)zbMATHMathSciNetGoogle Scholar
  28. 28.
    Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, Providence (1967)zbMATHGoogle Scholar
  29. 29.
    Alferes, J.J., Damásio, C.V., Pereira, L.M.: A Logic Programming System for Non-Monotonic Reasoning. Journal of Automated Reasoning 14, 93–147 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Zadeh, L.: A Theory of Approximate Reasoning. Machine Intelligence 9, 149–194 (1979)Google Scholar
  31. 31.
    Robinson, J.A.: A Machine Oriented Logic Based on the Resolution Principle. Journal of the ACM 12, 23–42 (1965)zbMATHCrossRefGoogle Scholar
  32. 32.
    Fontana, F.A., Formato, F., Gerla, G.: Fuzzy Unification as a Foundation of Fuzzy Logic Programming. In: Logic Programming and Soft Computing, pp. 51–68. Research Studies Press, Hertfordshire (1998)Google Scholar
  33. 33.
    Gilbert, D., Schroeder, M.: FURY: Fuzzy Unification and Resolution Based on Edit Distance. In: Proc. 1st International Symposium on Bioinformatics and Biomedical Engineering, pp. 330–336 (2000)Google Scholar
  34. 34.
    Fung, P., Brayshaw, M., du Boulay, B., Elsom-Cook, M.: Towards a Taxonomy of Misconceptions of the Prolog Interpreter. In: Brna, P., du Boulay, B., Pain, H. (eds.) Learning to Build and Comprehend Complex Information Structures: Prolog as a Case Study, Ablex (1999)Google Scholar
  35. 35.
    Vidal, E., Marzal, A., Aibar, P.: Fast Computation of Normalized Edit Distances. IEEE Transactions on Pattern Analysis and Machine Intelligence 17 (1995) 899–902Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Ralf Schweimeier
    • 1
  • Michael Schroeder
    • 1
    • 2
  1. 1.Department of ComputingCity UniversityLondonUK
  2. 2.Department of Computer ScienceTechnische Universität DresdenDresdenGermany

Personalised recommendations