Advertisement

Theory of One Tape Linear Time Turing Machines

  • Kohtaro Tadaki
  • Tomoyuki Yamakami
  • Jack C. H. Lin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2932)

Abstract

A theory of one-tape linear-time Turing machines is quite different from its polynomial-time counterpart. This paper discusses the computational complexity of one-tape Turing machines of various machine types (deterministic, nondeterministic, reversible, alternating, probabilistic, counting, and quantum Turing machines) that halt in time O(n), where the running time of a machine is defined as the height of its computation tree. We also address a close connection between one-tape linear-time Turing machines and finite state automata.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adleman, L.M., DeMarrais, J., Huang, M.A.: Quantum Computability. SIAM J. Comput. 26, 1524–1540 (1997)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bennett, C.H.: Logical Reversibility of Computation. IBM J. Res. Develop. 17, 525–532 (1973)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bernstein, E., Vazirani, U.: Quantum Complexity Theory. SIAM J. Comput. 26, 1411–1473 (1997)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brodsky, A., Pippenger, N.: Characterizations of 1-Way Quantum Finite Automata. SIAM J. Comput. 31, 1456–1478 (2002)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Damm, C., Holzer, M.: Automata that Take Advice. In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 149–158. Springer, Heidelberg (1995)Google Scholar
  6. 6.
    Dwork, C., Stockmeyer, L.J.: A Time Complexity Gap for Two-Way Probabilistic Finite State Automata. SIAM J. Comput. 19, 1011–1023 (1990)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dwork, C., Stockmeyer, L.: Finite State Verifiers I: The Power of Interaction. J. ACM 39, 800–828 (1992)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hennie, F.C.: One-Tape, Off-Line Turing Machine Computations. Inform. Control 8, 553–578 (1965)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)MATHGoogle Scholar
  10. 10.
    Karp, R.M.: Some Bounds on the Storage Requirements of Sequential Machines and Turing Machines. J. ACM 14, 478–489 (1967)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kaneps, J., Freivalds, R.: Minimal Nontrivial Space Complexity of Probabilistic One-Way Turing Machines. In: Rovan, B. (ed.) MFCS 1990. LNCS, vol. 452, pp. 355–361. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  12. 12.
    Kobayashi, K.: On the Structure of One-Tape Nondeterministic Turing Machine Time Hierarchy. Theor. Comput. Sci. 40, 175–193 (1985)MATHCrossRefGoogle Scholar
  13. 13.
    Kondacs, A., Watrous, J.: On the Power of Quantum Finite State Automata. In: Proc. 38th FOCS, pp. 66–75 (1997)Google Scholar
  14. 14.
    Macarie, I.I.: Space-Efficient Deterministic Simulation of Probabilistic Automata. SIAM J. Comput. 27, 448–465 (1998)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Michel, P.: An NP-Complete Language Accepted in Linear Time by a One-Tape Turing Machine. Theor. Comput. Sci. 85, 205–212 (1991)MATHCrossRefGoogle Scholar
  16. 16.
    Rabin, M.O.: Probabilistic Automata. Inform. Control 6, 230–245 (1963)CrossRefGoogle Scholar
  17. 17.
    Turakainen, P.: On Stochastic Languages. Inform. Control 12, 304–313 (1968)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Turakainen, P.: On Languages Representable in Rational Probabilistic Automata. Annales Academiae Scientiarum Fennicae, Ser. A 439, 4–10 (1969)MathSciNetGoogle Scholar
  19. 19.
    Turakainen, P.: Generalized Automata and Stochastic Languages. Proc. Amer. Math. Soc. 21, 303–309 (1969)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Yamakami, T.: Average Case Complexity Theory. Ph.D. Dissertation, University of Toronto. Technical Report 307/97, University of Toronto. See also ECCC Thesis Listings (1997)Google Scholar
  21. 21.
    Yamakami, T.: A Foundation of Programming a Multi-Tape Quantum Turing Machine. In: Kutyłowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 430–441. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  22. 22.
    Yamakami, T.: Analysis of Quantum Functions. To appear in: International Journal of Foundations of Computer Science; A preliminary version appeared in: Pandu Rangan, C., Raman, V., Sarukkai, S. (eds.): FST TCS 1999. LNCS, vol. 1738, pp. 407–419. Springer, Heidelberg (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Kohtaro Tadaki
    • 1
  • Tomoyuki Yamakami
    • 2
  • Jack C. H. Lin
    • 2
  1. 1.ERATO Quantum Computation and Information ProjectJapan Science and Technology CorporationTokyoJapan
  2. 2.School of Information Technology and EngineeringUniversity of OttawaOttawaCanada

Personalised recommendations