Computing Unique Input/Output Sequences Using Genetic Algorithms

  • Qiang Guo
  • Robert M. Hierons
  • Mark Harman
  • Karnig Derderian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2931)


The problem of computing Unique Input/Ouput sequences (UIOs) is NP-hard. Genetic algorithms (GAs) have been proven to be effective in providing good solutions for some NP-hard problems. In this work, we investigated the construction of UIOs using GAs. We defined a fitness function to guide the search of potential UIOs and introduce a DO NOT CARE character to improve the GA’s diversity. Experimental results suggest that, in a small system, the performance of the GA based approaches is no worse than that of random search while, in a more complex system, the GA based approaches outperform random search.


FSMs UIOs Conformance Testing Genetic Algorithms Optimisation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aho, A.V., Dahbura, A.T., Lee, D., Uyar, M.U.: An Optimization Technique for Protocol Conformance Test Generation Based on UIO Sequences and Rural Chinese Postman Tours. IEEE Trans. Communications 39(3), 1604–1615 (1991)CrossRefGoogle Scholar
  2. 2.
    Lee, D., Yannakakis, M.: Testing Finite State Machines: State Identification and Verification. IEEE Trans. Computers 43(3), 306–320 (1994)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Lee, D., Yannakakis, M.: Principles and Methods of Testing Finite State Machines - A Survey. Proceedings of IEEE 84(8), 1090–1122 (1996)CrossRefGoogle Scholar
  4. 4.
    Sidhu, D.P., Leung, T.K.: Formal Methods for Protocol Testing: A Detailed Study. IEEE Transactions on Software Engineering 15(4) (April 1989)Google Scholar
  5. 5.
    Naik, K.: Efficient Computation of Unique Input/Output Sequences in Finite-State Machines. IEEE/ACM Transactions on Networking 5(4), 585–599 (1997)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Kohavi, Z.: Switching and Finite Automata Theory. McGraw-Hill, New York (1978)zbMATHGoogle Scholar
  7. 7.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  8. 8.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  9. 9.
    Shen, Y.N., Lombardi, F., Dahbura, A.T.: Protocol Conformance Testing Using Multiple UIO Sequences. In: Proc. Ninth IFIP WG6.1 Int. Symp. on Protocol Specif., Test., and Verif. (1989)Google Scholar
  10. 10.
    Yang, B., Ural, H.: Protocol Conformance Test Generation Using Multiple UIO Sequences with Overlapping. In: ACM SIGCOMM 1990: Communications, Architectures, and Protocols, Twente, The Netherlands, September 24-27, pp. 118–125. North- Holland, The Netherlands (1990)CrossRefGoogle Scholar
  11. 11.
    Miller, R.E., Paul, S.: On the Generation of Minimal-Length Conformance Tests for Communication Protocols. IEEE/ACM Transactions on Networking 1(1) (February 1993)Google Scholar
  12. 12.
    Shen, X., Li, G.: A new protocol conformance test generation method and experimental results. In: Proceedings of the 1992 ACM/SIGAPP Symposium on Applied computing, Kansas City, Missouri, United States, pp. 75–84 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Qiang Guo
    • 1
  • Robert M. Hierons
    • 1
  • Mark Harman
    • 1
  • Karnig Derderian
    • 1
  1. 1.Department of Information System and ComputingBrunel UniversityUxbridge, MiddlesexUnited Kingdom

Personalised recommendations