Advertisement

CQL: A Language for Continuous Queries over Streams and Relations

  • Arvind Arasu
  • Shivnath Babu
  • Jennifer Widom
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2921)

Abstract

Despite the recent surge of research in query processing over data streams, little attention has been devoted to defining precise semantics for continuous queries over streams. We first present an abstract semantics based on several building blocks: formal definitions for streams and relations, mappings among them, and any relational query language. From these basics we define a precise interpretation for continuous queries over streams and relations. We then propose a concrete language, CQL (for Continuous Query Language), which instantiates the abstract semantics using SQL as the relational query language and window specifications derived from SQL-99 to map from streams to relations. We have implemented most of the CQL language in a Data Stream Management System at Stanford, and we have developed a public repository of data stream applications that includes a wide variety of queries expressed in CQL.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Golab, L., Ozsu, T.: Issues in data stream management. SIGMOD Record 32, 5–14 (2003)CrossRefGoogle Scholar
  2. 2.
    Gehrke, J. (ed.): Special issue on data stream processing. IEEE Data Engineering Bulletin 26 (2003)Google Scholar
  3. 3.
    Babu, S., Widom, J.: Continuous queries over data streams. SIGMOD Record 30, 109–120 (2001)CrossRefGoogle Scholar
  4. 4.
    Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: A scalable continuous query system for internet databases. In: Proc. of the 2000, ACM SIGMOD Intl. Conf. on Management of Data, pp. 379–390 (2000)Google Scholar
  5. 5.
    Madden, S., Shah, M., Hellerstein, J., Raman, V.: Continuously adaptive continuous queries over streams. In: Proc. of the 2002, ACM SIGMOD Intl. Conf. on Management of Data, pp. 49–60 (2002)Google Scholar
  6. 6.
    Liu, L., Pu, C., Tang, W.: Continual queries for internet scale event-driven information delivery. IEEE Trans. on Knowledge and Data Engineering 11, 583–590 (1999)Google Scholar
  7. 7.
    Arasu, A., Babcock, B., Babu, S., McAlister, J., Widom, J.: Characterizing memory requirements for queries over continuous data streams. In: Proc. 21st ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pp. 221–232 (2002)Google Scholar
  8. 8.
    Chandrasekaran, S., Franklin, M.: Streaming queries over streaming data. In: Proc. 28th Intl. Conf. on Very Large Data Bases (2002)Google Scholar
  9. 9.
    Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Nishizawa, I., Rosenstein, J., Widom, J.: STREAM: The Stanford Stream Data Manager. In: Proc. of the 2003, ACM SIGMOD Intl. Conf. on Management of Data (2003), 665 Demo descriptionGoogle Scholar
  10. 10.
    (SQR – A Stream Query Repository), http://www.db.stanford.edu/stream/sqr
  11. 11.
    Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. In: Proc. of the 2002, ACM Symp. on Principles of Database Systems, pp. 1–16 (2002)Google Scholar
  12. 12.
    Gupta, A., Mumick, I.S.: Maintenance of materialized views: Problems, techniques, and applications. IEEE Data Engineering Bulletin 18, 3–18 (1995)Google Scholar
  13. 13.
    Jagadish, H., Mumick, I., Silberschatz, A.: View maintenance issues for the Chronicle data model. In: Proc. of the 1995, ACM Symp. on Principles of Database Systems, pp. 113–124 (1995)Google Scholar
  14. 14.
    Terry, D., Goldberg, D., Nichols, D., Oki, B.: Continuous queries over append-only databases. In: Proc. of the, ACM SIGMOD Intl. Conf. on Management of Data, pp. 321–330 (1992)Google Scholar
  15. 15.
    Barbara, D.: The characterization of continuous queries. Intl. Journal of Cooperative Information Systems 8, 295–323 (1999)CrossRefGoogle Scholar
  16. 16.
    Nguyen, B., Abiteboul, S., Cobena, G., Preda, M.: Monitoring XML data on the web. In: Proc. of the 2001, ACM SIGMOD Intl. Conf. on Management of Data, pp. 437–448 (2001)Google Scholar
  17. 17.
    Chandrasekaran, S., et al.: TelegraphCQ: Continuous Dataflow Processing for an Uncertain World. In: Proc. of the 2003, Conf. on Innovative Data Systems Research, pp. 269–280 (2003)Google Scholar
  18. 18.
    Wang, H., Zaniolo, C., Luo, R.: ATLaS: A Turing-complete extension of SQL for data mining applications and streams (2002), Manuscript available at http://wis.cs.ucla.edu/publications.html
  19. 19.
    Paton, N., Diaz, O.: Active database systems. ACM Computing Surveys 31 (1999)Google Scholar
  20. 20.
    Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stonebraker, M., Tatbul, N., Zdonik, S.: Monitoring streams–a new class of data management applications. In: Proc. 28th Intl. Conf. on Very Large Data Bases (2002) Material augmented by personal communication Google Scholar
  21. 21.
    Sullivan, M.: Tribeca: A stream database manager for network traffic analysis. In: Proc. of the 1996, Intl. Conf. on Very Large Data Bases, p. 594 (1996)Google Scholar
  22. 22.
    Ozsoyoglu, G., Snodgrass, R.: Temporal and real-time databases: A survey. IEEE Trans. on Knowledge and Data Engineering 7, 513–532 (1995)CrossRefGoogle Scholar
  23. 23.
    Seshadri, P., Livny, M., Ramakrishnan, R.: SEQ: a model for sequence databases. In: Proc. of the 1995, Intl. Conf. on Data Engineering, pp. 232–239 (1995)Google Scholar
  24. 24.
    Tucker, P.A., Tufte, K., Papadimos, V., Maier, D.: NEXMark – a benchmark for querying data streams (2002), Manuscript available at http://www.cse.ogi.edu/dot/niagara/NEXMark/
  25. 25.
    Srivastava, U., Widom, J.: Flexible time management in data stream systems. Technical report, Stanford University Database Group (2003), Available at http://dbpubs.stanford.edu/pub/2003-40
  26. 26.
    Vitter, J.: Random sampling with a reservoir. ACM Trans. on Mathematical Software 11, 37–57 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Motwani, R., Widom, J., et al.: Query processing, resource management, and approximation in a data stream management system. In: Proc. First Biennial Conf. on Innovative Data Systems Research (CIDR), pp. 245–256 (2003)Google Scholar
  28. 28.
    Cranor, C.D., Johnson, T., Spatscheck, O., Shkapenyuk, V.: Gigascope: A Stream Database for Network Applications. In: Proc. of the, ACM SIGMOD Intl. Conf. on Management of Data, pp. 647–651 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Arvind Arasu
    • 1
  • Shivnath Babu
    • 1
  • Jennifer Widom
    • 1
  1. 1.Stanford University 

Personalised recommendations