Skip to main content

Developing Task-Specific RBF Hand Gesture Recognition

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2915))

Abstract

In this paper we develop hand gesture learning and recognition techniques to be used in advanced vision applications, such as the ActIPret system for understanding the activities of expert operators for education and training. Radial Basis Function (RBF) networks have been developed for reactive vision tasks and work well, exhibiting fast learning and classification. Specific extensions of our existing work to allow more general 3-D activity analysis reported here are: 1) action-based representation in a hand frame-of-reference by pre-processing of the trajectory data; 2) adaptation of the time-delay RBF network scheme to use this relative velocity information from the 3-D trajectory information in gesture recognition; and 3) development of multi-task support in the classifications by exploiting prototype similarities extracted from different combinations of direction (target tower) and height (target pod) for the hand trajectory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basri, R.: Recognition by prototypes. IJ Computer Vision 19, 147–168 (1996)

    Article  Google Scholar 

  2. Beymer, D.J., Poggio, T.: Image representations for visual learning. Science 272, 1905–1909 (1996)

    Article  Google Scholar 

  3. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  4. Buxton, H., Howell, A.J., Sage, K.: The role of task control and context in learning to recognise gesture. In: Cognitive Vision Workshop, Zürich (2002)

    Google Scholar 

  5. Duvdevani-Bar, S., Edelman, S., Howell, A.J., Buxton, H.: A similarity-based method for the generalization of face recognition over pose and expression. In: IEEE Int. Conf. Face Gesture Recognition, Nara, Japan, pp. 118–123 (1998)

    Google Scholar 

  6. Elman, J.: Finding structure in time. Cognitive Science 14, 179–211 (1990)

    Article  Google Scholar 

  7. Feng, J., Sun, Y.L., Buxton, H.: Training the integrate-and-fire model with the Informax Principle II. IEEE Transactions on Neural Networks, 14 (2003) (accepted)

    Google Scholar 

  8. Gerstner, W.: Time structure of the activity in neural networks. Physical Review E 51, 738–758 (1995)

    Google Scholar 

  9. Howell, J., Buxton, H.: Invariance in radial basis function networks in human face classification. Neural Processing Letters 2, 26–30 (1995)

    Article  Google Scholar 

  10. Howell, J., Buxton, H.: Learning gestures for visually mediated interaction. In: British Machine Vision Conference, Southampton, UK (1998)

    Google Scholar 

  11. Howell, J., Buxton, H.: Learning identity with radial basis function networks. Neurocomputing 20, 15–34 (1998)

    Article  Google Scholar 

  12. Howell, J., Buxton, H.: Time-delay RBF networks for attentional frames in visually mediated interaction. Neural Processing Letters 15, 197–211 (2002)

    Article  MATH  Google Scholar 

  13. Jordan, M.I.: Serial order: A parallel, distributed processing approach. In: Advances in Connectionist Theory: Speech. Lawrence Erlbaum, Mahwah (1989)

    Google Scholar 

  14. Moody, J., Darken, C.: Learning with localized receptive fields. In: Proc. 1988 Connectionist Models Summer School, pp. 133–143 (1988)

    Google Scholar 

  15. Moody, J., Darken, C.: Fast learning in networks of locally tuned processing units. Neural Computation 1, 281–294 (1989)

    Article  Google Scholar 

  16. Poggio, T., Edelman, S.: A network that learns to recognise three-dimensional objects. Nature 343, 263–266 (1990)

    Article  Google Scholar 

  17. Poggio, T., Girosi, F.: Regularisation algorithms for learning that are equivalent to multilayer networks. Science 247, 978–982 (1990)

    Article  MathSciNet  Google Scholar 

  18. Pomerleau, D.A.: ALVINN: An autonomous land vehicle in a neural network. In: NIPS, vol. 1, pp. 305–313 (1989)

    Google Scholar 

  19. Rosenblum, M., Yacoob, Y., Davis, L.D.: Human emotion recognition from motion using a RBF network architecture. IEEE TNN 7, 1121–1138 (1996)

    Google Scholar 

  20. Vetter, T., Poggio, T.: Image synthesis from a single example image. In: ECCV, Cambridge, UK, pp. 652–659 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Howell, A.J., Sage, K., Buxton, H. (2004). Developing Task-Specific RBF Hand Gesture Recognition. In: Camurri, A., Volpe, G. (eds) Gesture-Based Communication in Human-Computer Interaction. GW 2003. Lecture Notes in Computer Science(), vol 2915. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24598-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24598-8_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21072-6

  • Online ISBN: 978-3-540-24598-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics