Self-Stabilizing Distributed Algorithm for Strong Matching in a System Graph

  • Wayne Goddard
  • Stephen T. Hedetniemi
  • David P. Jacobs
  • Pradip K. Srimani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2913)


We present a new self-stabilizing algorithm for finding a maximal strong matching in an arbitrary distributed network. The algorithm is capable of working with multiple types of demons (schedulers) as is the most recent algorithm in [1,2]. The concepts behind the algorithm, using Ids in the network, promise to have applications for other graph theoretic primitives.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gradinariu, M., Tixeuil, S.: Self-stabilizing vertex coloration of arbitary graphs. In: 4th International Conference On Principles Of DIstributed Systems, OPODIS 2000, pp. 55–70. Studia Informatica Universalis (2000)Google Scholar
  2. 2.
    Dolev, S., Welch, J.L.: Crash resilient communication in dynamic networks. IEEE Transactions on Computers 46, 14–26 (1997)CrossRefGoogle Scholar
  3. 3.
    Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communications of the ACM 17(11), 643–644 (1974)zbMATHCrossRefGoogle Scholar
  4. 4.
    Lamport, L.: Solved problems, unsolved problems, and non-problems in concurrency. In: Proceedings of the 3rd Annual ACM Symposium on Principles of Distributed Computing, pp. 1–11 (1984)Google Scholar
  5. 5.
    Schneider, M.: Self-stabilization. ACM Computing Surveys 25(1), 45–67 (1993)CrossRefGoogle Scholar
  6. 6.
    Herman, T.: A comprehensive bibliograph on self-stabilization, a working paper. Chicago J. Theoretical Comput. Sci.,
  7. 7.
    Antonoiu, G., Srimani, P.K.: Mutual exclusion between neighboring nodes in an arbitrary system graph tree that stabilizes using read/write atomicity. In: Amestoy, P.R., Berger, P., Daydé, M., Duff, I.S., Frayssé, V., Giraud, L., Ruiz, D. (eds.) Euro-Par 1999. LNCS, vol. 1685, pp. 823–830. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Beauquier, J., Datta, A.K., Gradinariu, M., Magniette, F.: Self-stabilizing local mutual exclusion and daemon refinement. In: Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, pp. 223–237. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Nesterenko, M., Arora, A.: Stabilization-preserving atomicity refinement. In: Jayanti, P. (ed.) DISC 1999. LNCS, vol. 1693, pp. 254–268. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Blair, J.R.S., Manne, F.: Efficient self-stabilizing algorithms for tree networks. In: Proceedings of ICDCS 2003, Rhode Island (2003)Google Scholar
  11. 11.
    Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Fault tolerant distributed coloring algorithms that stabilize in linear time. In: Proceedings of the IPDPS-2002 Workshop on Advances in Parallel and Distributed Computational Models, pp. 1–5 (2002)Google Scholar
  12. 12.
    Cameron, K.: Induced matchings. Discrete Applied Mathematics 24, 97–102 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Golumbic, M.C., Lewenstein, M.: New results in induced matchings. Discrete Applied Mathematics 101(1-3), 157–165 (2000)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Wayne Goddard
    • 1
  • Stephen T. Hedetniemi
    • 1
  • David P. Jacobs
    • 1
  • Pradip K. Srimani
    • 1
  1. 1.Department of Computer ScienceClemson UniversityClemson

Personalised recommendations