Multicriteria Network Design Using Distributed Evolutionary Algorithm

  • Rajeev Kumar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2913)


In this paper, we revisit a general class of multicriteria multiconstrained network design problems and attempt to solve, in a novel way, with a Distributed Evolutionary Algorithm (EA). A major challenge to solving such problems is to capture possibly all the (representative) equivalent and diverse solutions at convergence. In this work, we formulate, without loss of generality, a bi-criteria bi-constrained communication network topological design problem. Two of the primary objectives to be optimized are network delay and cost subject to satisfaction of reliability and flow-constraints. This is a NP-hard problem and the two-objective optimal solution front is not known a priori. Therefore, we adopt randomized search method and use multiobjective EA that produces diverse solution-space. We employ a distributed version of the algorithm and generate solutions from multiple tribes to ensure convergence. We tested this approach for designing networks of different sizes and found that the approach scales well with larger networks. Results are compared with those obtained by two traditional approaches namely, the exhaustive search and a heuristic search.


Span Tree Network Design Pareto Front Exhaustive Search Multiobjective Optimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Garey, M.R., Johnson, D.S.: Computers and Interactability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  2. 2.
    Hochbaum, D. (ed.): Approximation Algorithms for NP-Hard problems. PWS, Boston (1997)Google Scholar
  3. 3.
    Gerla, M., Kleinrock, L.: On the topological design of distributed computer networks. IEEE Trans. Communications 25(1), 48–60 (1977)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Kompella, V.P., Pasquale, J.C., Polyzos, G.C.: Multicast routing for multimedia communication. IEEE/ACM Trans. Networking, 286–292 (1993)Google Scholar
  5. 5.
    Borah, M., Owens, R.M., Irwin, M.J.: An edge-based heuristic for Steiner routing. IEEE Trans. Computer Aided Design of Integrated Circuits and Systems 13(12), 1563–1568 (1995)CrossRefGoogle Scholar
  6. 6.
    Boldon, N., Deo, N., Kumar, N.: Minimum-weight degree-constrained spanning tree problem: Heuristics and implementation on an SIMD parallel machine. Parallel Computing 22(3), 369–382 (1996)zbMATHCrossRefGoogle Scholar
  7. 7.
    Marathe, M.V., Ravi, R., Sundaram, R., Ravi, S.S., Rosenkrantz, D.J., Hunt, H.B.: Bicriteria network design problems. J. Algorithms 28(1), 142–171 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ravi, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Hunt, H.B.: Approximation algorithms for degree-constrained minimum-cost network design problems. Algorithmica 31(1), 58–78 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Coello, C.A.C., VanVeldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer, Boston (2002)zbMATHGoogle Scholar
  10. 10.
    Deb, K.: Multiobjective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)Google Scholar
  11. 11.
    Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint handling with evolutionary algorithms – Part I: a unified formulation. IEEE Transactions on Systems, Man and Cybernetics-Part A: Systems and Humans 28(1), 26–37 (1998)CrossRefGoogle Scholar
  12. 12.
    Deb, K., et al.: A fast non-dominated sorting genetic algorithm for multiobjective optimization: NSGA-II. Parallel Problem Solving from Nature PPSN-VI, 849–858 (2000)CrossRefGoogle Scholar
  13. 13.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm. In: EUROGEN 2001 (2001)Google Scholar
  14. 14.
    Knowles, J.D., Corne, D.W.: Approximating the non-dominated front using the Pareto Achieved Evolution Strategy. Evolutionary Computation 8(2), 149–172 (2000)CrossRefGoogle Scholar
  15. 15.
    Laumanns, M., Thiele, L., Deo, K., Zitzler, E.: Combining convergence and diversity in evolutionary multiobjective optimization. Evolutionary Computation 10(3), 263–282 (2002)CrossRefGoogle Scholar
  16. 16.
    Kumar, R., Rockett, P.I.: Improved sampling of the Pareto-front in multiobjective genetic optimizations by steady-state evolution: a Pareto converging genetic algorithm. Evolutionary Computation 10(3), 283–314 (2002)CrossRefGoogle Scholar
  17. 17.
    Purshouse, R.C., Fleming, P.J.: Elitism, sharing and ranking choices in evolutionary multi-criterion optimization. Research Report No. 815, Dept. Automatic Control & Systems Engineering, University of Sheffield (January 2002)Google Scholar
  18. 18.
    Jan, R.H., Hwang, F.J., Cheng, S.T.: Topological optimization of a communication network subject to a reliability constraint. IEEE Trans. Reliability 42(1), 63–69 (1993)zbMATHCrossRefGoogle Scholar
  19. 19.
    Ersoy, C., Panwar, S.S.: Topological design of interconnected LAN/MAN Networks. IEEE J. Select. Areas Communication 11(8), 1172–1182 (1993)CrossRefGoogle Scholar
  20. 20.
    Clarke, L.W., Anandalingam, G.: An integrated system for designing minimum cost survivable telecommunication networks. IEEE. Trans. Systems, Man and Cybernetics- Part A 26(6), 856–862 (1996)CrossRefGoogle Scholar
  21. 21.
    Atamturk, A., Rajan, D.: Survivable network design: simultaneous routing of flows and slacks. Research Report, IEOR, University of California at BerkeleyGoogle Scholar
  22. 22.
    Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. Journal of Global Optimization (1995)Google Scholar
  23. 23.
    Ribeiro, C.C., Rosseti, I.: A parallel GRASP heuristic for the 2-path network design problem. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400, p. 922. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Baran, B., Laufer, F.: Topological optimization of reliable networks using A-Teams. National Computer Center, National University of Asuncion, University Campus of San Lorenzo - ParaguayGoogle Scholar
  25. 25.
    Abuali, F.N., Schnoenefeld, D.A., Wainwright, R.L.: Designing telecommunication networks using genetic algorithms and probabilistic minimum spanning Trees. In: Proc. 1994 ACM Symp. Applied Computing, pp. 242–246 (1994)Google Scholar
  26. 26.
    Ko, K.T., Tang, K.S., Chan, C.Y., Man, K.F., Kwong, S.: Using genetic algorithms to design mesh networks. IEEE Computer 30(8), 56–61 (1997)Google Scholar
  27. 27.
    Kwong, S., Chan, T.M., Man, K.F., Chong, H.W.: The use of multiple objective genetic algorithm in self-healed network. Applied Soft Computing 2, 104–128 (2002)CrossRefGoogle Scholar
  28. 28.
    Elbaum, R., Sidi, M.: Topological design of local-area networks using genetic algorithms. IEEE/ACM Trans. Networking 4(5), 766–777 (1996)CrossRefGoogle Scholar
  29. 29.
    Kumar, A., Pathak, R.M., Gupta, Y.P.: Genetic-algorithm based reliability optimization for computer network expansion. IEEE Trans. Reliability 44(1), 63–72 (1995)CrossRefGoogle Scholar
  30. 30.
    White, A.R.P., Mann, J.W., Smith, G.D.: Genetic algorithms and network ring design. Annals of Operational Research 86, 347–371 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Dengiz, B., Altiparmak, F., Smith, A.E.: Local search genetic algorithm for optimal design of reliable networks. IEEE Trans. Evolutionary Computation 1(3), 179–188 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Rajeev Kumar
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations