Advertisement

Designing SANs to Support Low-Fanout Multicasts

  • Rajendra V. Boppana
  • Rajesh Boppana
  • Suresh Chalasani
Conference paper
  • 306 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2913)

Abstract

System area networks (SANs) need to support low-fanout multicasts efficiently in addition to broadcasts and unicasts. A critical component in SANs is the switch, which is commonly designed around crossbars. We present new switch designs using a combination of low-cost multistage switching fabrics and input and output buffering with hardware based packet scheduling mechanism. Using detailed simulations, we show that the proposed designs can scale to 512-ports and outperform crossbar based designs in a 4-switch SAN.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Prabhakar, B., McKeown, N., Ahuja, R.: Multicast Scheduling for Input- Queued Switches. IEEE Journal on Selected Areas in Communications 15(15), 885–886 (1997)Google Scholar
  2. 2.
    Yeh, Y., Hluchyj, M., Acampora, A.: The Knockout Switch: A Simple, Modular Architecture for High-Performance Packet Switching. IEEE Journal on Selected Areas in Communications SAC-5(8), 1274–1283 (1987)Google Scholar
  3. 3.
    de Vries, R.J.F.: ATM Multicast connections using the Gauss switch. In: Proc. GLOBECOM 1990, pp. 211–217 (1990)Google Scholar
  4. 4.
    Chen, D.X., Mark, J.W.: Multicasting in SCOQ Switch. In: INFOCOM 1994, pp. 290–297 (1994)Google Scholar
  5. 5.
    Chao, H.J., Choe, B.S.: Design and Analysis of large-scale multicast output buffered ATM switch. IEEE/ACM Trans. Networking 3, 126–138 (1995)CrossRefGoogle Scholar
  6. 6.
    Law, K.L.E., Leon-Garcia, A.: A large scalable ATM multicast switch. IEEE J. Selected Areas Commun. 15(5), 844–854 (1997)CrossRefGoogle Scholar
  7. 7.
    Lawrie, D.H.: Access and Alignment of Data in an Array Processor. IEEE Transactions on Computers, 1145–1155 (December 1975)Google Scholar
  8. 8.
    Schroeder, M.D., et al.: Autonet: A High-Speed, Self-Con figuring Local Area Network Using Point-to-Point links. IEEE Journal of selected areas in communications 9(8) (October 1991)Google Scholar
  9. 9.
    Boden, N.J., et al.: Myrinet: A Gigabit-per-second local area network. IEEE Micro, 29–36 (February 1995)Google Scholar
  10. 10.
    Garcia, D., Watson, W.: Servernet II. In: Proceedings of the 1997 Parallel Computer, Routing and Communication Workshop (June 1997)Google Scholar
  11. 11.
    Sheifert, R.: Gigabit Ethernet. Addison-Wesley, Reading (April 1998)Google Scholar
  12. 12.
    Infiniband Trade Assoc., Infiniband Architecture Specification, Release 1.0, Infiniband Trade Association (2000)Google Scholar
  13. 13.
    Leland, W.E., Taqqu, M.S., Willinger, W., Willson, D.V.: On the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Transactions on Networking 2, 1–15 (1994)CrossRefGoogle Scholar
  14. 14.
    Paxson, V., Floyd, S.: Wide area traffic: The failure of Poisson modeling. IEEE/ACM Transactions on Networking 3, 226–244 (1995)CrossRefGoogle Scholar
  15. 15.
    Boppana, R.V., Raghavendra, C.S.: Designing efficient Benes and Banyan based input buffered ATM switches. In: ICC 1999 (1999)Google Scholar
  16. 16.
    Boppana, R.: Design of Multicast Switches for SANs. Masters thesis, University of Texas at San Antonio (May 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Rajendra V. Boppana
    • 1
  • Rajesh Boppana
    • 1
  • Suresh Chalasani
    • 2
  1. 1.CS DepartmentThe Univ. of Texas at San AntonioSan AntonioUSA
  2. 2.School of Business and TechnologyUniv. of Wisconsin-ParksideKenoshaUSA

Personalised recommendations