Skip to main content

On the Approximability of the Minimum Fundamental Cycle Basis Problem

  • Conference paper
Approximation and Online Algorithms (WAOA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2909))

Included in the following conference series:

Abstract

We consider the problem of finding a fundamental cycle basis of minimum total weight in the cycle space associated with an undirected biconnected graph G, where a nonnegative weight is assigned to each edge of G and the total weight of a basis is defined as the sum of the weights of all the cycles in the basis. Although several heuristics have been proposed to tackle this NP-hard problem, which has several interesting applications, nothing is known regarding its approximability. In this paper we show that this problem is MAXSNP-hard and hence does not admit a polynomial-time approximation scheme (PTAS) unless P=NP. We also derive the first upper bounds on the approximability of the problem for arbitrary and dense graphs. In particular, for complete graphs, it is approximable within 4+ε , for any ε >0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and hardness of approximation problems. Journal of ACM 45, 501–555 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alon, N., Karp, R., Peleg, D., West, D.: Graph-theoretic game and its application to the k-server problem. SIAM J. Comput. 24, 78–100 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and approximation: Combinatorial optimization problems and their approximability properties. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  4. Bartal, Y.: On the approximation of metric spaces by tree metrics. In: Proceedings of STOC 1998, pp. 161–168 (1998)

    Google Scholar 

  5. Brambilla, A., Premoli, A.: Rigorous event-driven (RED) analysis of large scale RC circuits. IEEE Trans. on CAS-I 48, 938–954 (2001)

    Article  Google Scholar 

  6. Charikar, M., Chekuri, C., Goel, A., Guha, S., Plotkin, S.: Approximating a finite metric by a small number of tree metrics. In: Proceedings of FOCS 1998, pp. 161–168 (1998)

    Google Scholar 

  7. Deo, N., Prabhu, G.M., Krishamoorthy, M.S.: Algorithms for generating fundamental cycles in a graph. ACM Trans. Math. Software 8, 26–42 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Deo, N., Kumar, N., Parsons, J.: Minimum-length fundamental-cycle set: New heuristics and an empirical study. Congressus Numerantium 107, 141–154 (1995)

    MATH  MathSciNet  Google Scholar 

  9. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximatinng arbitrary metrics by tree metrics. In: Proceedings of STOC 2003, pp. 448–455 (2003)

    Google Scholar 

  10. Galbiati, G.: On min-max cycle bases. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 116–123. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Horton, J.D.: A polynomial-time algorithm to find the shortest cycle basis of a graph. SIAM J. Comput. 16, 358–366 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hu, T.C.: Optimum communication spanning trees. SIAM J. Comput. 3, 188–195 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  13. Liebchen, C., Peeters, L.: On cyclic timetabling and cycles in graphs. Technical Report 761, Technische Universität Berlin (2002)

    Google Scholar 

  14. Konjevod, G., Ravi, R., Salman, F.S.: On approximating planar metrics by tree metrics. Information Processing Letters 80, 213–219 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. System Sci. 43, 425–440 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Peleg, D.: Polylogarithmic approximation for minimum communication spanning trees. Technical Report CS 97-10, The Weizmann Institute (July 1997)

    Google Scholar 

  17. Peleg, D.: Low stretch spanning trees. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 68–80. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Peleg, D., Reshef, E.: Deterministic polylog approximation for minimum communication spanning trees. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 670–681. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  19. Reshef, E.: Approximating minimum communication cost spanning trees and related problems. M.Sc. Thesis, The Weizmann Institute of Science (1999)

    Google Scholar 

  20. Syslo, M.M.: On cycle bases of a graph. Networks 9, 123–132 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sussenouth Jr., E.: A graph theoretical algorithm for matching chemical structures. J. Chem. Doc. 5, 36–43 (1965)

    Article  Google Scholar 

  22. Vismara, P.: Reconnaissance et représentation d’éléments structuraux pour la description d’objets complexes. Application à l’élaboration de stratégies de synthèse en chimie organique. Thèse de Doctorat, Université de Montpellier II, France (1995)

    Google Scholar 

  23. Wu, B.Y., Lancia, G., Bafna, V., Chao, K.-M., Ravi, R., Tang, C.Y.: A polynomialtime approximation scheme for minimum routing cost spanning trees. SIAM J. Comput. 29, 761–778 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Galbiati, G., Amaldi, E. (2004). On the Approximability of the Minimum Fundamental Cycle Basis Problem. In: Solis-Oba, R., Jansen, K. (eds) Approximation and Online Algorithms. WAOA 2003. Lecture Notes in Computer Science, vol 2909. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24592-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24592-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21079-5

  • Online ISBN: 978-3-540-24592-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics