Skip to main content

On Computing All Immobilizing Grasps of a Simple Polygon with Few Contacts

  • Conference paper
Algorithms and Computation (ISAAC 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2906))

Included in the following conference series:

Abstract

We study the output-sensitive computation of all combinations of edges and vertices of a simple polygon P that allow a form-closure grasp with less than four point contacts. We present an O(m 4/3log1/3 m + K)-time algorithm to compute all form-closure grasps using two frictionless point contacts, and an O(n 2logO(1) n + K)-time algorithm to compute all such grasps with three point contacts. Here, n is the number of edges and m is the number of concave vertices of P. We also present an O(n 2log4 n + K)-time algorithm that enumerates all edge triples with a second-order immobility grasp using Czyzowicz’s conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In: Chazelle, B., Goodman, J.E., Pollack, R. (eds.) Advances in Discrete and Computational Geometry. Contemporary Mathematics, vol. 223, pp. 1–56. American Mathematical Society, Providence (1999)

    Google Scholar 

  2. Brost, R., Goldberg, K.: A complete algorithm for designing planar fixtures using modular components. IEEE Transactions on Robotics and Automation 12, 31–46 (1996)

    Article  Google Scholar 

  3. Chazelle, B.: Cutting hyperplanes for divide-and-conquer. Discrete & Computational Geometry 9(1), 145–158 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chazelle, B., Guibas, L.J., Lee, D.T.: The power of geometric duality. In: IEEE Symposium on Foundations of Computer Science, pp. 217–225 (1983)

    Google Scholar 

  5. Czyzowicz, J., Stojmenovic, I., Urrutia, J.: Immobilizing a shape. International Journal of Computational Geometry and Applications 9(2), 181–206 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  7. Goldman, A.J., Tucker, A.W.: Polyhedral convex cones. Linear Inequalities and Related Systems, pp. 19–40 (1956)

    Google Scholar 

  8. Gopalakrishnan, G., Goldberg, K.: Gripping parts at concave vertices. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1590–1596 (May 2002)

    Google Scholar 

  9. Markenscoff, X., Ni, L., Papadimitriou, C.H.: The geometry of grasping. International Journal of Robotics Research 9(1), 61–74 (1990)

    Article  Google Scholar 

  10. Matoušek, J.: Range searching with efficient hierarchical cuttings. Discrete Comput. Geom. 10(2), 157–182 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mishra, B., Schwartz, J.T., Sharir, M.: On the existence and synthesis of multifinger positive grips. Algorithmica 2, 541–558 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Nguyen, V.-D.: Constructing force-closure grasps. International Journal of Robotics Research 7(3), 3–16 (1988)

    Article  Google Scholar 

  13. Reuleaux, F.: The Kinematics of Machinery. Macmilly and Company (1876) (republished by Dover in 1963)

    Google Scholar 

  14. Rimon, E., Burdick, J.W.: New bounds on the number of frictionless fingers required to immobilize planar objects. J. of Robotic Systems 12(6), 433–451 (1995)

    Article  MATH  Google Scholar 

  15. Rimon, E., Burdick, J.W.: Mobility of bodies in contact—part I: A secondorder mobility index for multiple-finger graps. IEEE Transactions on Robotics and Automation 14, 696–708 (1998)

    Article  Google Scholar 

  16. Rimon, E., Burdick, J.W.: Mobility of bodies in contact—part II: How forces are generated by curvature effects. IEEE Transactions on Robotics and Automation 14, 709–717 (1998)

    Article  Google Scholar 

  17. Salisbury, K.: Kinematic and force analysis of articulated hands. PhD thesis, Stanford University (1982)

    Google Scholar 

  18. van der Stappen, A.F., Wentink, C., Overmars, M.H.: Computing immobilizing grasps of polygonal parts. International Journal of Robotics Research 19(5), 467–479 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheong, JS., Haverkort, H.J., van der Stappen, A.F. (2003). On Computing All Immobilizing Grasps of a Simple Polygon with Few Contacts. In: Ibaraki, T., Katoh, N., Ono, H. (eds) Algorithms and Computation. ISAAC 2003. Lecture Notes in Computer Science, vol 2906. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24587-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24587-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20695-8

  • Online ISBN: 978-3-540-24587-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics