Skip to main content

On Why Discretization Works for Naive-Bayes Classifiers

  • Conference paper
AI 2003: Advances in Artificial Intelligence (AI 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2903))

Included in the following conference series:

Abstract

We investigate why discretization can be effective in naive-Bayes learning. We prove a theorem that identifies particular conditions under which discretization will result in naive-Bayes classifiers delivering the same probability estimates as would be obtained if the correct probability density functions were employed. We discuss the factors that might affect naive-Bayes classification error under discretization. We suggest that the use of different discretization techniques can affect the classification bias and variance of the generated classifiers. We argue that by properly managing discretization bias and variance, we can effectively reduce naive-Bayes classification error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bay, S.D.: The UCI KDD archive. Department of Information and Computer Science, University of California, Irvine (1999), http://kdd.ics.uci.edu

  2. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases. Department of Information and Computer Science, University of California, Irvine (1998), http://www.ics.uci.edu/~mlearn/mlrepository.html

  3. Bluman, A.G.: Elementary Statistics, A Step By Step Approach. Wm.C.Brown Publishers (1992)

    Google Scholar 

  4. Breiman, L.B.: variance and arcing classifiers. Tech. Rep., Statistics Department, University of California, Berkerley (1996)

    Google Scholar 

  5. Casella, G., Berger, R.L.: Statistical Inference. Pacific Grove, Calif. (1990)

    Google Scholar 

  6. Cestnik, B.: Estimating probabilities: A crucial task in machine learning. In: Proc. 9th European Conf. Artificial Intelligence, pp. 147–149 (1990)

    Google Scholar 

  7. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of continuous features. In: Proc. 12th Int. Conf. Machine Learning, pp. 194–202 (1995)

    Google Scholar 

  8. Duda, R., Hart, P.: Pattern Classification and Scene Analysis. John Wiley & Sons, Chichester (1973)

    MATH  Google Scholar 

  9. Friedman, J.H.: On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Mining and Knowledge Discovery 1(1), 55–77 (1997)

    Article  Google Scholar 

  10. Gama, J., Torgo, L., Soares, C.: Dynamic discretization of continuous attributes. In: Proc. 6th Ibero-American Conf. AI, pp. 160–169 (1998)

    Google Scholar 

  11. Hsu, C.-N., Huang, H.-J., Wong, T.-T.: Why discretization works for naive Bayesian classifiers. In: Proc. 17th Int. Conf. Machine Learning, pp. 309–406 (2000)

    Google Scholar 

  12. Hsu, C.-N., Huang, H.-J., Wong, T.-T.: Implications of the Dirichlet assumption for discretization of continuous variables in naive Bayesian classifiers. Machine Learning (in press)

    Google Scholar 

  13. Hussain, F., Liu, H., Tan, C.L., Dash, M.: Discretization: An enabling technique, Tech. Rep., TRC6/99, School of Computing, National University of Singapore (1999)

    Google Scholar 

  14. John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers. In: Proc. 11th Conf. Uncertainty in Artificial Intelligence, pp. 338–345 (1995)

    Google Scholar 

  15. Kohavi, R., Wolpert, D.: Bias plus variance decomposition for zero-one loss functions. In: Proc. 13th Int. Conf. Machine Learning, pp. 275–283 (1996)

    Google Scholar 

  16. Kong, E.B., Dietterich, T.G.: Error-correcting output coding corrects bias and variance. Proc. 12th Int. Conf. Machine Learning, 313–321 (1995)

    Google Scholar 

  17. Kononenko, I.: Naive Bayesian classifier and continuous attributes. Informatica 16(1), 1–8 (1992)

    MathSciNet  Google Scholar 

  18. Mitchell, T.M.: Machine Learning. McGraw-Hill Companies, New York (1997)

    MATH  Google Scholar 

  19. Moore, D.S., McCabe, G.P.: Introduction to the Practice of Statistics, 4th edn. Michelle Julet (2002)

    Google Scholar 

  20. Mora, L., Fortes, I., Morales, R., Triguero, F.: Dynamic discretization of continuous values from time series. In: Proc. 11th European Conf. Machine Learning, pp. 280–291 (2000)

    Google Scholar 

  21. Pazzani, M.J.: An iterative improvement approach for the discretization of numeric attributes in Bayesian classifiers. In: Proc. 1st Int. Conf. Knowledge Discovery and Data Mining, 228–233 (1995)

    Google Scholar 

  22. Samuels, M.L., Witmer, J.A.: Statistics For The Life Sciences, 2nd edn., pp. 10–11. Prentice-Hall, Englewood Cliffs (1999)

    Google Scholar 

  23. Torgo, L., Gama, J.: Search-based class discretization. In: van Someren, M., Widmer, G. (eds.) ECML 1997. LNCS, vol. 1224, pp. 266–273. Springer, Heidelberg (1997)

    Google Scholar 

  24. Webb, G.I.: Multiboosting: A technique for combining boosting and wagging. Machine Learning 40(2), 159–196 (2000)

    Article  Google Scholar 

  25. Yang, Y., Webb, G.I.: Proportional k-interval discretization for naive-Bayes classifiers. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 564–575. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  26. Yang, Y., Webb, G.I.: Discretization for naive-Bayes learning: Managing discretization bias and variance. Tech. Rep. 2003/131, School of Computer Science and Software Engineering, Monash University (2003) (submitted for journal publication)

    Google Scholar 

  27. Zheng, Z., Webb, G.I.: Lazy learning of Bayesian rules. Machine Learning 41(1), 53–84 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, Y., Webb, G.I. (2003). On Why Discretization Works for Naive-Bayes Classifiers. In: Gedeon, T.(.D., Fung, L.C.C. (eds) AI 2003: Advances in Artificial Intelligence. AI 2003. Lecture Notes in Computer Science(), vol 2903. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24581-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24581-0_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20646-0

  • Online ISBN: 978-3-540-24581-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics