Skip to main content

A Hidden Variable Approach to Analyze “Hidden” Dynamics of Social Networks

  • Chapter
Why Context Matters

Abstract

This paper deals with the statistical analysis of social networks, and it consists of two parts. First, a survey of the existing, power-law -inspired approaches to the modeling of degree distributions of social networks is conducted. It is argued, with the support of a simple experiment, that these approaches can hardly accommodate and comprehensively explain the range of phenomena observed in empirical social networks. Second, an alternative modeling framework is presented. The observed, macro-level behavior of social networks is described in terms of the individual, “hidden” dynamics, and the necessary equations are given. It is demonstrated, via experiments, that a Laplace-Stieltjes hypertransform of the distribution function of human decision-making or reaction time often provides for an adequate model in statistical analysis of social systems. The study results are briefly discussed, and conclusions are drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, S., Thurner, S. (2005). Analytic formula for hidden variable distribution: Complex networks arising from fluctuating random graphs. Physical Review E, 72, 036102.

    Article  Google Scholar 

  • Acosta, G., Grana, M., Pinasco, J.P. (2006). Condition numbers and scale free graphs. The European Physical Journal B, 53, 381–385.

    Article  Google Scholar 

  • Adamic, L.A., Huberman, B.A. (2000). Power-Law Distribution of the World Wide Web. Science, 287, 2115a.

    Article  Google Scholar 

  • Akaike, H. (1983). Information measures and model selection. International Statistical Institute, 44, 277–291.

    Google Scholar 

  • Baddeley, A.D. (2007). Working Memory, Thought, and Action. New York: Oxford University Press.

    Google Scholar 

  • Barabasi, A.-L. (2005). The origin of bursts and heavy tails in human dynamics. Nature, 435, 207–211.

    Article  Google Scholar 

  • Barabasi, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509.

    Article  Google Scholar 

  • Bauke, H. (2007). Parameter estimation for power-law tail distributions by maximum likelihood methods. arXiv:0704.1867v2 [cond-mat.other].

    Google Scholar 

  • Beck, C., & Cohen, E.G.D. (2003). Superstatistics. Physica A, 322, 267–275.

    Article  Google Scholar 

  • Bernstein, S.N. (1928). Sur les functions absolument monotones. ACTA Mathematica, 51, 1 66.

    Article  Google Scholar 

  • Boguna, M., & Pastor-Satorras, R. (2003). Class of correlated random networks with hidden variables. Physical Review E, 68, 036112.

    Article  Google Scholar 

  • Bookstein, A. (1990). Informetric Distributions, Part I: Unified Overview. Journal of the American Society for Information Science, 41(5), 368–375.

    Article  Google Scholar 

  • Caldarelli, G., Capocci, A., De Los Rios, P., Mumoz, M.A. (2002). Scale-Free Networks from Varying Vertex Intrinsic Fitness. Physical Review Letters, 89, 258702.

    Article  Google Scholar 

  • Champernowne, D. (1953). A model of income distribution. Economic Journal, 63, 318–351.

    Article  Google Scholar 

  • Clauset, A., Shalizi, C.R., Newman, M.E.J. (2007). Power-law distributions in empirical data. arXiv:0706.1062v1 [physics.data-an].

    Google Scholar 

  • Cohen, J.E. (1981). Publication Rate as a Function of Laboratory Size in Three Biomedical Research Institutions. Scientometrics, 3(6), 467–487.

    Article  Google Scholar 

  • Doyle, J., Hansen, E., McNolty, F. (1980). Properties of the mixed exponential failure process. Technometrics, 22, 555–565.

    Article  Google Scholar 

  • Eckmann, J.-P., Moses, E., Sergi, D. (2004). Entropy of dialogues creates coherent structures in e-mail traffic. PNAS, 101(40), 14333–14337.

    Article  Google Scholar 

  • Feldmann, A., & Whitt, W. (1998). Fitting mixtures of exponentials to long-tail distributions to analyze network performance models. Performance Evaluation, 31, 245–279.

    Article  Google Scholar 

  • Fewell, M.P. (2004). Comparative Descriptive Statistics of Skewed Probability Distributions, Technical report DSTO-TR-1596. Australian Government, Department of Defense (DSTO).

    Google Scholar 

  • Gerchak, Y. (1984). Durations in Social States: Concepts of Inertia and Related Comparisons in Stochastic Models. Sociological Methodology, 14, 194–224.

    Article  Google Scholar 

  • Goldstein, M.L., Morris, S.A., Yen, G.G. (2004). Problems with fitting to the power-law distribution. The European Physical Journal B, 41(2), 255–258.

    Article  Google Scholar 

  • Harris, C.M. (1968). The Pareto Distribution As A Queue Service Discipline. Operations Research, 16, 307–313.

    Article  Google Scholar 

  • Johansen, A. (2004). Probing human response times. Physica A, 338, 286–291.

    Article  Google Scholar 

  • Kryssanov, V.V., Kakusho, K., Kuleshov, E.L., Minoh, M. (2005). Modeling hypermedia-based communication. Information Sciences, 174(1–2), 37–53.

    Article  Google Scholar 

  • Kryssanov, V.V., Kuleshov, E.L., Rinaldo, F.J., Ogawa, H. (2007). We cite as we communicate: A communication model for the citation process. arXiv:cs/0703115v2 [cs.DL].

    Google Scholar 

  • Kryssanov, V.V., Rinaldo, F.J., Kuleshov, E.L., Ogawa, H. (2006). Modeling the Dynamics of Social Networks. arXiv:cs/0605101v1 [cs.CY].

    Google Scholar 

  • Lafouge, T. (2007). The source-item coverage of the exponential function. Journal of Informetrics, 1(1), 59–67.

    Article  Google Scholar 

  • Laherrere, J., & Sornette, D. (1998). Stretched exponential distributions in nature and economy: “fat tails” with characteristic scales. The European Physical Journal B, 2(4), 525–539.

    Article  Google Scholar 

  • Lehmann, S., Lautrup, B., Jackson, A.D. (2003). Citation networks in high energy physics. Physical Review E, 68(2), 026113.

    Article  Google Scholar 

  • Li, L. (2007). Topologies of Complex Networks: Functions and Structure. Ph.D. Dissertation. Pasadena, California: California Institute of Technology.

    Google Scholar 

  • Luce, R.D. (1986). Response Times: Their Role in Inferring Elementary Mental Organization. New York: Oxford University Press.

    Google Scholar 

  • Luce, R.D., & Raiffa, H. (1957). Games and Decisions. New York: Wiley.

    Google Scholar 

  • Maljkovic, V., & Martini, P. (2005). Implicit short-term memory and event frequency effects in visual search. Vision Research, 45(21), 2831–2846.

    Article  Google Scholar 

  • Mandelbrot, B.B. (1960). On the theory of word frequencies and on related Markovian models of discourse. In R. Jakobson (Ed.), Proceedings of the Twelfth Symposium in Applied Mathematics (pp. 190–219). New York: American Mathematical Society.

    Google Scholar 

  • Mitzenmacher, M. (2003). A Brief History of Generative Models for Power Law and Lognormal Distributions. Internet Mathematics, 1, 226–251.

    Google Scholar 

  • Newman, M.E.J. (2005). Power laws, Pareto distributions and Zipf’s law. Contemporary Physics, 46, 323–351.

    Article  Google Scholar 

  • Simon, H.A. (1955). On a class of skew distribution functions. Biometrika, 42, 425–440.

    Google Scholar 

  • Stouffer, D.B., Malmgren, R.D., Amaral, L.A.N. (2005). Comments on “The origin of bursts and heavy tails in human dynamics”. arXiv:physics/0510216v1 [physics.data-an].

    Google Scholar 

  • Vandermeer, J., & Perfecto, I. (2006). A Keystone Mutualism Drives Pattern in a Power Function. Science, 311, 1000–1002.

    Article  Google Scholar 

  • van Zandt, T. (2000). How to fit a response time distribution. Psychonomic Bulletin & Review, 7, 424–465.

    Google Scholar 

  • van Zandt, T., & Ratcliff, R. (1995). Statistical mimicking of reaction time data: Single-process models, parameter variability, and mixtures. Psychonomic Bulletin & Review, 2(1), 20–54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Thomas N. Friemel

Rights and permissions

Reprints and permissions

Copyright information

© 2008 VS Verlag für Sozialwissenschaften | GWV Fachverlage GmbH, Wiesbaden

About this chapter

Cite this chapter

Kryssanov, V.V., Rinaldo, F.J., Kuleshov, E.L., Ogawa, H. (2008). A Hidden Variable Approach to Analyze “Hidden” Dynamics of Social Networks. In: Friemel, T.N. (eds) Why Context Matters. VS Verlag für Sozialwissenschaften. https://doi.org/10.1007/978-3-531-91184-7_2

Download citation

Publish with us

Policies and ethics