Advertisement

Lehren und Lernen mit digitalen Medien

Ansätze und Befunde der empirischen Bildungsforschung
  • Karsten StegmannEmail author
  • Christof WeckerEmail author
  • Heinz MandlEmail author
  • Frank FischerEmail author
Chapter
Part of the Springer Reference Sozialwissenschaften book series (SRS)

Zusammenfassung

Digitale Medien sind ein Bestandteil vieler Lernumgebungen in Schule, Hochschule, Aus- und Weiterbildung. Die zentrale Frage der empirischen Bildungsforschung mit Bezug auf Lehren und Lernen mit digitalen Medien ist daher weniger, ob digitale Medien eingesetzt werden sollten, sondern (1) welche Einsatzformen digitaler Medien mit welchen Wirkungen auf das Lernen einhergehen. Dabei sind vor allem die Bedingungsfaktoren für möglichst förderliche Effekte digitaler Medien von Interesse. Darauf aufbauend stellt sich die Frage, (2) von welchen Kontextbedingungen des Einsatzes digitaler Medien die Implementation digitaler Medien in der Praxis abhängt.

Schlüsselwörter

Digitale Medien Multimediales Lernen Kognitive Tutoren Simulationsbasiertes Lernen Computer-Supported Collaborative Learning (CSCL) 

Literatur

  1. Adesope, O. O., & Nesbit, J. C. (2012). Verbal redundancy in multimedia learning environments: A meta-analysis. Journal of Educational Psychology, 104(1), 250–263.CrossRefGoogle Scholar
  2. Aiello, N. C., & Wolfle, L. M. (1980). A meta-analysis of individualized instruction in science. Vortrag beim Annual Meeting of the American Educational Research Association. Boston.Google Scholar
  3. Al-Kadi, A. S., & Donnon, T. (2013). Using simulation to improve the cognitive and psychomotor skills of novice students in advanced laparoscopic surgery: A meta-analysis. Medical Teacher, 35(Suppl. 1), 47–55.CrossRefGoogle Scholar
  4. Aleven, V., McLaren, B. M., Sewall, J., van Velsen, M., Popescu, O., Demi, S., Ringenberg, M., & Koedinger, K. R. (2016). Example-tracing tutors: Intelligent tutor development for non-programmers. International Journal of Artificial Intelligence in Education, 26(1), 224–269.CrossRefGoogle Scholar
  5. Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons learned. Journal of the Learning Sciences, 4(2), 167–207.  https://doi.org/10.1207/s15327809jls0402_2
  6. Anderson, J. R., Matessa, M., & Lebiere, C. (1997). ACT-R: A theory of higher level cognition and its relation to visual attention. Human-Computer Interaction, 12(4), 439–462.CrossRefGoogle Scholar
  7. Bangert-Drowns, R. L. (1985, März/April). Meta-analysis of findings on computer-based education with precollege students. Vortrag beim Annual meeting of the American Educational Research Association. Chicago.Google Scholar
  8. Barrows, H. S., & Tamblyn, R. M. (1980). Problem-based learning: An approach to medical education. New York: Springer.Google Scholar
  9. Beelmann, A., & Karing, C. (2014). Implementationsfaktoren und -prozesse in der Präventionsforschung: Strategien, Probleme, Ergebnisse, Perspektiven. Psychologische Rundschau, 65(3), 129–139.CrossRefGoogle Scholar
  10. Blok, H., Oostdam, R., Otter, M. E., & Overmaat, M. (2002). Computer-assisted instruction in support of beginning reading instruction: A review. Review of Educational Research, 72(1), 101–130.CrossRefGoogle Scholar
  11. Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2009). Introduction to Meta-Analysis. West Sussex: John Wiley & Sons.Google Scholar
  12. Britt, M. A., Richter, T., & Rouet, J.-F. (2014). Scientific literacy: The role of goal-directed reading and evaluation in understanding scientific information. Eudcational Psychologist, 49(2), 104–122.CrossRefGoogle Scholar
  13. Brünken, R., Steinbacher, S., & Leutner, D. (2000). Räumliches Vorstellungsvermögen und Lernen mit Multimedia. In D. Leutner & R. Brünken (Hrsg.), Neue Medien in Unterricht, Aus- und Weiterbildung (S. 37–46). Münster: Waxmann.Google Scholar
  14. Bürg, O. (2005). Akzeptanz von E-Learning in Unternehmen: Die Bedeutung von institutionellen Rahmenbedingungen, Merkmalen des Individuums und Merkmalen der Lernumgebung für die Akzeptanz von E-Learning. Berlin: Logos.Google Scholar
  15. Chambers, E. A. (2003). Efficacy of educational technology in elementary and secondary classrooms: A meta-analysis of the research literature from 1992–2002. Unveröffentlichte Doktorarbeit.Google Scholar
  16. Chiu, Y.-H. (2013). Computer-assisted second language vocabulary instruction: A meta-analysis. British Journal of Educational Technology, 44(2), E52–E56.CrossRefGoogle Scholar
  17. Chiu, Y.-h., Kao, C., & Reynolds, B. L. (2012). The relative effectiveness of digital game-based learning types in English as a foreign language setting: A meta-analysis. British Journal of Educational Technology, 43(4), E104–E107.Google Scholar
  18. Clark, R. E. (1983). Reconsidering research on learning from media. Review of Educational Research, 53(4), 445–459.CrossRefGoogle Scholar
  19. Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the crafts of reading, writing, and mathematics. In L. B. Resnick (Hrsg.), Knowing, learning, and instruction. Essays in the honour of Robert Glaser (S. 453–494). Hillsdale: Erlbaum.Google Scholar
  20. Consorti, F., Mancuso, R., Nocioni, M., & Piccolo, A. (2012). Efficacy of virtual patients in medical education: A meta-analysis of randomized studies. Computers & Education, 59(3), 1001–1008.CrossRefGoogle Scholar
  21. D’Angelo, C., Rutstein, D., Harris, C., Bernard, R., Borokhovski, E., & Haertel, G. (2014). Simulations for STEM learning: Systematic review and meta-analysis. Menlo Park: SRI International.Google Scholar
  22. DeMaria, S. J., Bryson, E. O., Mooney, T. J., Silverstein, J. H., Reich, D. L., Bodian, C., et al. (2010). Adding emotional stressors to training in simulated cardiopulmonary arrest enhances participant performance. Medical Education, 44, 1006–1015.CrossRefGoogle Scholar
  23. Demir, S., & Basol, G. (2014). Effectiveness of computer-assisted mathematics education (CAME) over academic achievement: A meta-analysis study. Educational Sciences: Theory and Practice, 14(5), 2026–2035.Google Scholar
  24. Eickelmann, B., Schaumburg, H., Drossel, K., & Lorenz, R. (2014). Schulische Nutzung von neuen Technologien in Deutschland im internationalen Vergleich. In W. Bos, B. Eickelmann, J. Gerick, F. Goldhammer, H. Schaumburg, K. Schwippert, M. Senkbeil, R. Schulz-Zander & H. Wendt (Hrsg.), ICILS 2013 – Computer- und informationsbezogene Kompetenzen von Schülerinnen und Schülern in der 8. Jahrgangsstufe im internationalen Vergleich (S. 197–229). Münster: Waxmann.Google Scholar
  25. Euler, D. (2005). Gestaltung der Implementierung von E-Learning-Innovationen: Förderung der Innovationsbereitschaft von Lehrenden und Lernenden als zentrale Akteure der Implementierung. In D. Euler & S. Seufert (Hrsg.), E-Learning in Hochschulen und Bildungszentren (S. 561–584). München: Oldenbourg.Google Scholar
  26. Fischer, F., Kollar, I., Stegmann, K., & Wecker, C. (2013). Toward a script theory of guidance in computer-supported collaborative learning. Educational Psychologist, 48(1), 56–66.CrossRefGoogle Scholar
  27. Fishman, B., Pinkard, N., & Bruce, C. (1998). Preparing schools for curricular reform: Planning for technology vs. technology planning. In A. Bruckman, M. Guzdial, J. Kolodner & A. Ram (Hrsg.), International conference on the learning sciences (S. 98–104). Atlanta: AACE.Google Scholar
  28. Gasevic, D., Kovanovic, V., Joksimovic, S., & Siemens, G. (2014). Where is research on massive open online courses headed? A data analysis of the MOOC research initiative. The International Review of Research in Open and Distributed Learning, 15(5), 134.CrossRefGoogle Scholar
  29. Gersten, R., Beckmann, S., Clarke, B., Foegen, A., Marsh, L., Star, J. R., & Witzel, B. (2009). Assisting students struggling with mathematics: Response to Intervention (RtI) for elementary and middle schools (NCEE 2009–4060). Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education. http://ies.ed.gov/ncee/wwc/publications/practiceguides/.
  30. Ginns, P. (2005). Meta-analysis of the modality effect. Learning and Instruction, 15, 313–331.CrossRefGoogle Scholar
  31. Ginns, P. (2006). Integrating information: A meta-analysis of the spatial contiguity and temporal contiguity effects. Learning and Instruction, 16(6), 511–525.CrossRefGoogle Scholar
  32. Gräsel, C., & Parchmann, I. (2004). Implementationsforschung – oder: der steinige Weg, Unterricht zu verändern. Unterrichtswissenschaft, 32(3), 196–214.Google Scholar
  33. Grimshaw, J., Eccles, M., Thomas, R., & MacLennan, G. (2006). Toward evidence-based quality improvement: Evidence (and its limitations) of the effectiveness of guideline dissemination and implementation strategies 1966–1998. Journal of General Internal Medicine, 21, 14–20.Google Scholar
  34. Hattie, J. A. C. (2009). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. London: Routledge.Google Scholar
  35. Hense, J. U., Mandl, H., & Schratzenstaller, A. (2005). Bildungscontrolling in der Schule? Möglichkeiten und Grenzen des Prozess-, Output- und Transfercontrollings am Beispiel eines innovativen Unterrichtsprojekts. Unterrichtswissenschaft, 33, 334–358.Google Scholar
  36. Hsu, Y.-C. (2003). The effectiveness of computer-assisted instruction in statistics education: A meta-analysis. Unveröffentlichte Doktorarbeit.Google Scholar
  37. de Jong, T. (2006). Computer simulations – Technological advances in inquiry learning. Science, 312, 532–533.CrossRefGoogle Scholar
  38. Kerr, N. L. (1983). Motivation losses in small groups: A social dilemma analysis. Journal of Personality and Social Psychology, 45, 819–828.CrossRefGoogle Scholar
  39. Kulik, J. A., & Fletcher, J. D. (2016). Effectiveness of intelligent tutoring systems: A meta-analytic review. Review of Educational Research, 86(1), 42–78.Google Scholar
  40. Kulik, J. A., Bangert, R. L., & Williams, G. W. (1983). Effects of computer-based teaching on secondary school students. Journal of Educational Psychology, 75(1), 19–26.CrossRefGoogle Scholar
  41. Kulik, J. A., Kulik, C. L. C., & Bangert-Drowns, R. L. (1985). Effectiveness of computer-based education in elementary schools. Computers in Human Behavior, 1(1), 59–74.CrossRefGoogle Scholar
  42. Lawless, K., & Pellegrino, J. (2007). Professional development in integrating technology into teaching and learning: Knowns, unknowns, and ways to pursue better questions and answers. Review of Educational Research, 77(4), 575–614.CrossRefGoogle Scholar
  43. Lehmann, S., & Mandl, H. (2006). Implementation von E-Learning in Unternehmen. In M. Henninger & H. Mandl (Hrsg.), Handbuch Medien- und Bildungsmanagement (S. 436–457). Weinheim: Beltz.Google Scholar
  44. Levie, W. H., & Lentz, R. (1982). Effects of text illustrations: A review of research. Educational Communication and Technology Journal, 30(4), 195–232.Google Scholar
  45. Levin, J. R., Anglin, G. J., & Carney, R. N. (1987). On empirically validating functions of pictures in prose. In D. M. Willows & H. A. Houghton (Hrsg.), The psychology of illustration. Bd. 1: Basic research (S. 51–86). New York: Springer.CrossRefGoogle Scholar
  46. Lin, H. (2014). Establishing an empirical link between computer-mediated communication and SLA: A meta-analysis. Language Learning & Technology, 18(3), 120–147.Google Scholar
  47. Lin, W.-C., Huang, H.-T., & Liou, H.-C. (2013). The effects of text-based SCMC on SLA: A meta- analysis. Language Learning & Technology, 17(2), 123–142.Google Scholar
  48. Ma, W., Adesope, O. O., Nesbit, J. C., & Liu, Q. (2014). Intelligent tutoring systems and learning outcomes: A meta-analysis. Journal of Educational Psychology, 106(4), 901–918.CrossRefGoogle Scholar
  49. Mandl, H., & Kopp, B. (2006a). Blended Learning: Forschungsfragen und Perspektiven. In FNM (Hrsg.), Forschung zu Blended Learning: Österreichische F & E Projekte und EU-Beteiligung (S. 5–24). Graz: Forum Neue Medien.Google Scholar
  50. Mandl, H., & Kopp, B. (2006b). Situated learning – Theories and models. In P. Nentwig & D. Waddington (Hrsg.), Making it relevant: Context based learning of science (S. 15–34). Münster: Waxmann.Google Scholar
  51. Mandl, H., Gruber, H., & Renkl, A. (2002). Situiertes Lernen in multimedialen Lernumgebungen. In L. J. Issing & P. Klimsa (Hrsg.), Information und Lernen mit Multimedia und Internet (S. 138–148). Weinheim: Beltz.Google Scholar
  52. Mayer, R. E. (1989). Systematic thinking fostered by illustrations in scientific text. Journal of Educational Psychology, 81, 240–246.CrossRefGoogle Scholar
  53. Mayer, R. E. (2009). Multimedia learning (2. Aufl.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  54. Mayer, R. E. (2014). Cognitive theory of multimedia learning. In R. E. Mayer (Hrsg.), The Cambridge handbook of multimedia learning (2. Aufl., S 43–71). New York: Cambridge University Press.Google Scholar
  55. Mayer, R. E., & Gallini, J. K. (1990). When is an illustration worth ten thousand words? Journal of Educational Psychology, 82(4), 715–726.CrossRefGoogle Scholar
  56. McGraw, K. O., & Wong, S. (1992). A common language effect size statistic. Psychological Bulletin, 111(2), 361–365.CrossRefGoogle Scholar
  57. Means, B., Toyama, Y., Murphy, R. F., & Baki, M. (2013). The effectiveness of online and blended learning: A meta-analysis of the empirical literature. Teachers College Record, 115(3).Google Scholar
  58. Michie, S., Johnosn, M., Abraham, C., & Lawton, R. (2005). Making psychological theory useful for implementing evidence based practice: A consensus approach. Quality and Safety in Health Care, 14, 26–33.CrossRefGoogle Scholar
  59. Michie, S., Fixsen, D., Grimshaw, J., & Eccles, M. (2009). Specifying and reporting complex behavior change interventions: The need for a scientific method. Implementation Science, 4, 40.CrossRefGoogle Scholar
  60. Mu, J., Stegmann, K., Mayfield, E., Rosé, C., & Fischer, F. (2012). The ACODEA framework: Developing segmentation and classification schemes for fully automatic analysis of online discussions. International Journal of Computer-Supported Collaborative Learning, 7(2), 285–305.CrossRefGoogle Scholar
  61. Paivio, A. (1991). Dual coding theory: Retrospect and current status. Canadian Journal of Psychology/Revue Canadienne de psychologie, 45(3), 255–287.CrossRefGoogle Scholar
  62. Petermann, F. (2014). Implementationsforschung: Grundbegriffe und Konzepte. Psychologische Rundschau, 65(3), 122–128.CrossRefGoogle Scholar
  63. Plass, J. L., Chun, D. M., Mayer, R. E., & Leutner, D. (2003). Cognitive load in reading a foreign language text with multimedia aids and the influence of verbal and spatial abilities. Computers in Human Behavior, 19, 221–243.CrossRefGoogle Scholar
  64. Prensky, M., & Thiagarajan, S. (2007). Digital game-based learning. St. Paul: Paragon House.Google Scholar
  65. Rehmann, A., Mitman, R., & Reynolds, M. (1995). A handbook of flight simulation fidelity requirements for human factors research. Xenia: Wright-Patterson Air Force Base: Crew Systems Ergonomics Information Analysis Centre.CrossRefGoogle Scholar
  66. Renkl, A., & Atkinsion, R. K. (2007). Interactive learning environments: Contemporary issues and trends. An introduction to the special issue. Educational Psychology Review, 19, 235–238.CrossRefGoogle Scholar
  67. Renkl, A., Mandl, H., & Gruber, H. (1996). Inert knowledge: Analyses and remedies. Educational Psychologist, 31(2), 115–121.CrossRefGoogle Scholar
  68. Rosen, Y., & Salomon, G. (2007). The differential learning achievements of constructivist technology-intensive learning environments as compared with traditional ones: A meta-analysis. Journal of Educational Computing Research, 36(1), 1–14.CrossRefGoogle Scholar
  69. Schnotz, W. (2005). An integrated model of text and picture comprehension. In R. E. Mayer (Hrsg.), Cambridge handbook of multimedia learning (S. 49–69). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  70. Sorensen, J., Van der Vleuten, C., Lindschou, J., Gluud, C., Ostergaard, D., LeBlanc, V., et al. (2013). ‚In situ simulation‘ versus ‚off site simulation‘ in obstetric emergencies and their effect on knowledge, safety attitudes, team performance, stress, and motivation: Study protocol for a randomized controlled trial. Trials, 14(1), 220–231.CrossRefGoogle Scholar
  71. Spitzer, M. (2012). Digitale Demenz: Wie wir uns und unsere Kinder um den Verstand bringen. München: Droemer.Google Scholar
  72. Stegmann, K., Weinberger, A., & Fischer, F. (2011). Aktives Lernen durch Argumentieren: Evidenz für das Modell der Argumentativen Wissenskonstruktion in Online-Diskussionen. Unterrichtswissenschaft, 39(3), 231–244.Google Scholar
  73. Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. New York: Springer.CrossRefGoogle Scholar
  74. Tamim, R. M., Bernard, R. M., Borokhovski, E., Abrami, P. C., & Schmid, R. F. (2011). What forty years of research says about the impact of technology on learning: A second-order meta-analysis and validation study. Review of Educational Research, 8(1), 4–28.CrossRefGoogle Scholar
  75. VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educational Psychologist, 46(4), 197–221.CrossRefGoogle Scholar
  76. Vázquez-Abad, J., & LaFleur, M. (1990). Design of a performance-responsive drill and practice algorithm for computer-based training. Computers & Education, 14(1), 43–52.CrossRefGoogle Scholar
  77. Vogel, F., Wecker, C., Kollar, I., & Fischer, F. (im Druck). Socio-cognitive scaffolding with computer-supported collaboration scripts: A meta-analysis. Educational Psychology Review.Google Scholar
  78. Walker, E., Walker, S., Rummel, N., & Koedinger, K. R. (2010). Using problem-solving context to assess help quality in computer-mediated peer tutoring. In Intelligent tutoring systems (S. 145–155). Berlin: Springer.CrossRefGoogle Scholar
  79. Wecker, C., Vogel, F., & Hetmanek, A. (im Druck). Visionär und imposant – aber auch belastbar? Eine Kritik der Methodik von Hatties „Visible Learning“. Zeitschrift für Erziehungswissenschaft.Google Scholar
  80. Weinberger, A., Fischer, F., & Mandl, H. (2003). Gemeinsame Wissenskonstruktion in computervermittelter Kommunikation: Wirkungen von Kooperationsskripts auf den Erwerb anwendungsorientierten Wissens. Zeitschrift für Psychologie, 211(2), 86–97.CrossRefGoogle Scholar
  81. Williams, K. D., & Karau, S. J. (1991). Social loafing and social compensation: The effects of expectations of co-worker performance. Journal of Personality and Social Psychology, 61, 570–581.CrossRefGoogle Scholar
  82. Wirth, M. (2005). Die Lehr-Lern-Kultur als Ausgangspunkt und Gestaltungsfeld nachhaltiger E-Learning-Implementierungen. In D. Euler & S. Seufert (Hrsg.), E-Learning in Hochschulen und Bildungszentren (S. 373–403). München: Oldenbourg.Google Scholar
  83. Wouters, P., van Nimwegen, C., van Oostendorp, H., & van der Spek, E. D. (2013). A meta-analysis of the cognitive and motivational effects of serious games. Journal of Educational Psychology, 105(2), 249–265.CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2018

Authors and Affiliations

  1. 1.Lehrstuhl für Empirische Pädagogik und Pädagogische PsychologieLudwig-Maximilians-Universität MünchenMünchenDeutschland
  2. 2.Lehrstuhl für PsychologieUniversität PassauPassauDeutschland
  3. 3.Ludwig-Maximilians-Universität MünchenLehrstuhl für Empirische Pädagogik und Pädagogische PsychologieMünchenDeutschland
  4. 4.GräfelfingDeutschland

Personalised recommendations