Skip to main content

Statische Festigkeit und Verformung, Kriechen

  • Chapter
Handbuch Hochtemperatur-Werkstofftechnik
  • 403 Accesses

Zusammenfassung

Bei einer homologen Temperatur von etwa 0,4 TS vollzieht sich ein fließender Übergang von zeitunabhängiger zu zeitabhängiger Festigkeit und Verformung. Bei Vorgängen unterhalb rund 0,4 TS spricht man von Tieftemperatur- oder Kaltverformung, oberhalb etwa 0,4 TS von Hochtemperatur- oder Warmverformung. Im Gegensatz zu tiefen Temperaturen bleiben die Versetzungen bei hohen Temperaturen nach der Belastung nicht eingefroren, sondern befindet sich ständig in Bewegung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur zu Kap. 3

  1. H.E. Boyer (Ed.): Atlas of Stress-Strain Curves, Amer. Soc. for Metals Int. (ASM), Metals Park Ohio, 1986

    Google Scholar 

  2. H.E. Boyer (Ed.): Atlas of Creep and Stress-Rupture Curves, Amer. Soc. for Metals Int. (ASM), Metals Park Ohio, 1988

    Google Scholar 

  3. R.W. Cahn (Ed.): Physical Metallurgy, North-Holland Publ., Amsterdam, 1970

    Google Scholar 

  4. R.W. Cahn, P. Haasen, E.J. Kramer (Eds.): Materials Science and Technology, Vol. 6, Plastic Deformation and Fracture, H. Mughrabi (Volume Editor), VCH, Weinheim, 1993

    Google Scholar 

  5. H.E. Evans: Mechanisms of Creep Fracture, Elsevier Appl. Sci. Publ., London, 1984.

    Google Scholar 

  6. H.J. Frost, M.F. Ashby: Deformation-Mechanism Maps, Pergamon, Oxford, 1982

    Google Scholar 

  7. J.P. Hirth, J. Lothe: Theory of Dislocations, McGraw-Hill, New York, 1968

    Google Scholar 

  8. D. Hull, D.J. Bacon: Introduction to Dislocations, Pergamon, Oxford, 1984

    Google Scholar 

  9. B. Ilschner: Hochtemperatur-Plastizität, Springer, Berlin, 1973

    Book  Google Scholar 

  10. R.K. Penny, D.L. Marriott: Design for Creep, 2nd ed., Chapman & Hall, London, 1995

    Book  Google Scholar 

  11. H. Riedel: Fracture at High Temperatures, Springer, Berlin, 1987

    Google Scholar 

  12. O.D. Sherby, P.M. Burke: Mechanical Behavior of Crystalline Solids at Elevated Temperature, Progress in Materials Science, 13, Pergamon, Oxford, 1967

    Google Scholar 

  13. Dislocations and Properties of Real Materials, Proc. Conf. Dec. 11–12, 1984, The Institute of Metals, London, 1985

    Google Scholar 

  14. R. Bürgel, Mat.-wiss. u. Werkstofftech., 23 (1992), 287–292

    Article  Google Scholar 

  15. R.K. Penny, D.L. Marriott: Design for Creep, Chapman & Hall. London, 1995, 38 f.

    Google Scholar 

  16. H.-J. Penkalla, M. Rödig, H. Nickel, Materialprüfung, 31 (1989), 304–310

    Google Scholar 

  17. J. Weertman, J. Appl. Phys. 26 (1955), 1213–1217

    Article  CAS  Google Scholar 

  18. S. Takeuchi, A.S. Argon, J. Mat. Sci., 11 (1976), 1542–1566

    Article  CAS  Google Scholar 

  19. R. Bürgel, Dissertation Universität Hannover, 1981

    Google Scholar 

  20. O.D. Sherby, P.M. Burke: Mechanical Behavior of Crystalline Solids at Elevated Temperature, Progress in Materials Science, 13 (1967), 7, Pergamon Press, Oxford

    Google Scholar 

  21. O.D. Sherby, A.K. Miller, J. Engg. Mat. Techn., 101 (1979), 387–395

    Article  CAS  Google Scholar 

  22. C.R. Barrett, O.D. Sherby, Trans. Met. Soc. AIME, 233 (1965), 1116–1119

    CAS  Google Scholar 

  23. H.E. Evans, Mechanisms of Creep Fracture, Elsevier Appl. Sci. Publ., London, 1984, 9

    Google Scholar 

  24. M.F. Ashby, Surface Science, 31 (1972), 498–542

    Article  CAS  Google Scholar 

  25. R. Raj, M.F. Ashby, Metall. Trans., 2 (1971), 1113–1127

    Article  Google Scholar 

  26. R.N. Stevens, Surface Science, 31 (1972), 543–565

    Article  CAS  Google Scholar 

  27. J. Weertman, Trans. Metall. Soc. AIME, 227 (1963), 1475

    Google Scholar 

  28. H.J. Frost, M.F. Ashby: Deformation-Mechanism Maps, Pergamon, Oxford, 1982

    Google Scholar 

  29. M.F. Ashby, D.R.H. Jones, Engineering Materials 1, Pergamon, Oxford, 1991, 175

    Google Scholar 

  30. M. F. Ashby: Strengthening Methods in Metals and Alloys, in: The Microstructure and Design of Alloys, Proc. 3rd Int. Conf. Strength of Metals and Alloys, Cambridge/Engl., 20–25 Aug. 1973, 8–42

    Google Scholar 

  31. W.C. Leslie, Met. Trans., 3 (1972), 5–26

    Article  CAS  Google Scholar 

  32. E.W. Ross, C.T. Sims, in: Superalloys II, C.T. Sims et al. (Eds.), John Wiley, New York, 1987, 104

    Google Scholar 

  33. G. Schoeck, Creep and Recovery, Cleveland, Amer. Soc. for Metals ASM, 1957, 199

    Google Scholar 

  34. G.S. Ansell, J. Weertman, Transact. Met. Soc. AIME, 215 (1959), 838–843

    CAS  Google Scholar 

  35. R. Lagneborg, B. Bergman, J. Met. Sci., 10 (1976), 20–28

    Article  CAS  Google Scholar 

  36. B. Reppich, Z. Metallkd., 73 (1982), 697–705

    CAS  Google Scholar 

  37. K. Schneider et al.: Advanced Blading for Gas Turbines, COST 501-I1, W.P. 1, Review Febr. 1992, ABB Mannheim

    Google Scholar 

  38. D.J. Srolovitz, M.J. Luton, R. Petkovic-Luton, D.M. Barnett, W.D. Nix, Acta metall., 32 (1984), 1079–1088

    Article  CAS  Google Scholar 

  39. W. Blum, B. Reppich, in: B. Wilshire, R.W. Evans (Eds.), Creep Behaviour of Crystalline Solids, 3 (1985), Progress in Creep and Fracture, Pineridge Press, Swansea, 83

    Google Scholar 

  40. E. Arzt, D.S. Wilkinson, Acta metall., 34 (1986), 1893–1898

    Article  CAS  Google Scholar 

  41. T.M. Pollock, A.S. Argon, Acta metall. mater., 40 (1992), 1–30

    Article  CAS  Google Scholar 

  42. T.M. Pollock, A.S. Argon, in: Superalloys 1988, D. Duhl et al. (Eds.), The Metall. Soc., Warrendale/Pa., 285–294

    Google Scholar 

  43. S. Straub, M. Meier, J. Ostermann, W. Blum, VGB Kraftwerkstechnik, 73 (1993), 744–752

    CAS  Google Scholar 

  44. M.F. Ashby, C. Gandhi, D.M.R. Taplin, Acta Met., 27 (1979), 699–729

    Article  CAS  Google Scholar 

  45. H. Riedel, Fracture at High Temperatures, Springer, Berlin, 1987, 242

    Google Scholar 

  46. A.S. Argon, Scripta Met., 17 (1983), 5–12

    Article  Google Scholar 

  47. R. Raj, Transactions ASME, J. Engg. Mat. Tech., Apr. 1976, 132–139

    Google Scholar 

  48. B.F. Dyson, M.J. Rogers, Metal Sci. J., 8 (1974), 261–266

    CAS  Google Scholar 

  49. M.S. Loveday, B.F. Dyson, Acta Metall., 31 (1983), 397

    Article  CAS  Google Scholar 

  50. R.T. Holt, W. Wallace, Int. Metals Rev., 21 (1976), March, 1–24

    Google Scholar 

  51. Metals Technology, 11 (1984), gesamtes Oktober-Heft

    Google Scholar 

  52. H. Riedel, Fracture at High Temperatures, Springer, Berlin, 1987, 121 ff.

    Google Scholar 

  53. M.P. Seah, Acta Met., 28 (1980), 955–962

    Article  CAS  Google Scholar 

  54. R.H. Bricknell, D.A. Woodford, in: Creep and Fracture of Engineering Materials and Structures, B. Wilshire, D.R.J. Owen (Eds.), Pineridge Press, Swansea, 1981, 249

    Google Scholar 

  55. H. Riedel, Fracture at High Temperatures, Springer, Berlin, 1987, 135f.

    Google Scholar 

  56. R.W. Evans, B. Wilshire, in: Creep and Fracture of Engineering Materials and Sructures, B. Wilshire, D.R.J. Owen (Eds.), Pineridge Press, Swansea, 1981, 303

    Google Scholar 

  57. B.A. Wilcox, A.H. Clauer, Acta Metall., 20 (1972), 743–757

    Article  CAS  Google Scholar 

  58. R.F. Singer, E. Arzt, in: Superalloys 1984, M. Gell et al. (Eds.), The Metall. Soc. of AIME, Warrendale (PA), 1984, 367

    Google Scholar 

  59. H. Zeizinger, E. Arzt, Z. Metallkde., 79 (1988), 774–781

    CAS  Google Scholar 

  60. F.C. Monkman, N.J. Grant, Proc. ASTM, 56 (1956), 593

    Google Scholar 

  61. D. Lonsdale, P.E.J. Flewitt, Met. Sci., 12 (1978), 264–265

    Article  CAS  Google Scholar 

  62. F. Larson, J. Miller, Trans. ASME, 74 (1952), 765–775

    Google Scholar 

  63. D. McLean, Account of Creep Studies, COST 50, EEC Contract ref. no. ECI-1122B7230–83-UK, 1985

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig / Wiesbaden

About this chapter

Cite this chapter

Bürgel, R. (1998). Statische Festigkeit und Verformung, Kriechen. In: Handbuch Hochtemperatur-Werkstofftechnik. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-99904-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-99904-7_3

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-322-99905-4

  • Online ISBN: 978-3-322-99904-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics