Advertisement

Statische Festigkeit und Verformung, Kriechen

  • Ralf Bürgel
Chapter
  • 225 Downloads

Zusammenfassung

Bei einer homologen Temperatur von etwa 0,4 TS vollzieht sich ein fließender Übergang von zeitunabhängiger zu zeitabhängiger Festigkeit und Verformung. Bei Vorgängen unterhalb rund 0,4 TS spricht man von Tieftemperatur- oder Kaltverformung, oberhalb etwa 0,4 TS von Hochtemperatur- oder Warmverformung. Im Gegensatz zu tiefen Temperaturen bleiben die Versetzungen bei hohen Temperaturen nach der Belastung nicht eingefroren, sondern befindet sich ständig in Bewegung.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur zu Kap. 3

  1. H.E. Boyer (Ed.): Atlas of Stress-Strain Curves, Amer. Soc. for Metals Int. (ASM), Metals Park Ohio, 1986Google Scholar
  2. H.E. Boyer (Ed.): Atlas of Creep and Stress-Rupture Curves, Amer. Soc. for Metals Int. (ASM), Metals Park Ohio, 1988Google Scholar
  3. R.W. Cahn (Ed.): Physical Metallurgy, North-Holland Publ., Amsterdam, 1970Google Scholar
  4. R.W. Cahn, P. Haasen, E.J. Kramer (Eds.): Materials Science and Technology, Vol. 6, Plastic Deformation and Fracture, H. Mughrabi (Volume Editor), VCH, Weinheim, 1993Google Scholar
  5. H.E. Evans: Mechanisms of Creep Fracture, Elsevier Appl. Sci. Publ., London, 1984.Google Scholar
  6. H.J. Frost, M.F. Ashby: Deformation-Mechanism Maps, Pergamon, Oxford, 1982Google Scholar
  7. J.P. Hirth, J. Lothe: Theory of Dislocations, McGraw-Hill, New York, 1968Google Scholar
  8. D. Hull, D.J. Bacon: Introduction to Dislocations, Pergamon, Oxford, 1984Google Scholar
  9. B. Ilschner: Hochtemperatur-Plastizität, Springer, Berlin, 1973CrossRefGoogle Scholar
  10. R.K. Penny, D.L. Marriott: Design for Creep, 2nd ed., Chapman & Hall, London, 1995CrossRefGoogle Scholar
  11. H. Riedel: Fracture at High Temperatures, Springer, Berlin, 1987Google Scholar
  12. O.D. Sherby, P.M. Burke: Mechanical Behavior of Crystalline Solids at Elevated Temperature, Progress in Materials Science, 13, Pergamon, Oxford, 1967Google Scholar
  13. Dislocations and Properties of Real Materials, Proc. Conf. Dec. 11–12, 1984, The Institute of Metals, London, 1985Google Scholar
  14. [3.1]
    R. Bürgel, Mat.-wiss. u. Werkstofftech., 23 (1992), 287–292CrossRefGoogle Scholar
  15. [3.2]
    R.K. Penny, D.L. Marriott: Design for Creep, Chapman & Hall. London, 1995, 38 f.Google Scholar
  16. [3.3]
    H.-J. Penkalla, M. Rödig, H. Nickel, Materialprüfung, 31 (1989), 304–310Google Scholar
  17. [3.4]
    J. Weertman, J. Appl. Phys. 26 (1955), 1213–1217CrossRefGoogle Scholar
  18. [3.5]
    S. Takeuchi, A.S. Argon, J. Mat. Sci., 11 (1976), 1542–1566CrossRefGoogle Scholar
  19. [3.6]
    R. Bürgel, Dissertation Universität Hannover, 1981Google Scholar
  20. [3.7]
    O.D. Sherby, P.M. Burke: Mechanical Behavior of Crystalline Solids at Elevated Temperature, Progress in Materials Science, 13 (1967), 7, Pergamon Press, OxfordGoogle Scholar
  21. [3.8]
    O.D. Sherby, A.K. Miller, J. Engg. Mat. Techn., 101 (1979), 387–395CrossRefGoogle Scholar
  22. [3.9]
    C.R. Barrett, O.D. Sherby, Trans. Met. Soc. AIME, 233 (1965), 1116–1119Google Scholar
  23. [3.10]
    H.E. Evans, Mechanisms of Creep Fracture, Elsevier Appl. Sci. Publ., London, 1984, 9Google Scholar
  24. [3.11]
    M.F. Ashby, Surface Science, 31 (1972), 498–542CrossRefGoogle Scholar
  25. [3.12]
    R. Raj, M.F. Ashby, Metall. Trans., 2 (1971), 1113–1127CrossRefGoogle Scholar
  26. [3.13]
    R.N. Stevens, Surface Science, 31 (1972), 543–565CrossRefGoogle Scholar
  27. [3.14]
    J. Weertman, Trans. Metall. Soc. AIME, 227 (1963), 1475Google Scholar
  28. [3.15]
    H.J. Frost, M.F. Ashby: Deformation-Mechanism Maps, Pergamon, Oxford, 1982Google Scholar
  29. [3.16]
    M.F. Ashby, D.R.H. Jones, Engineering Materials 1, Pergamon, Oxford, 1991, 175Google Scholar
  30. [3.17]
    M. F. Ashby: Strengthening Methods in Metals and Alloys, in: The Microstructure and Design of Alloys, Proc. 3rd Int. Conf. Strength of Metals and Alloys, Cambridge/Engl., 20–25 Aug. 1973, 8–42Google Scholar
  31. [3.18]
    W.C. Leslie, Met. Trans., 3 (1972), 5–26CrossRefGoogle Scholar
  32. [3.19]
    E.W. Ross, C.T. Sims, in: Superalloys II, C.T. Sims et al. (Eds.), John Wiley, New York, 1987, 104Google Scholar
  33. [3.20]
    G. Schoeck, Creep and Recovery, Cleveland, Amer. Soc. for Metals ASM, 1957, 199Google Scholar
  34. [3.21]
    G.S. Ansell, J. Weertman, Transact. Met. Soc. AIME, 215 (1959), 838–843Google Scholar
  35. [3.22]
    R. Lagneborg, B. Bergman, J. Met. Sci., 10 (1976), 20–28CrossRefGoogle Scholar
  36. [3.23]
    B. Reppich, Z. Metallkd., 73 (1982), 697–705Google Scholar
  37. [3.24]
    K. Schneider et al.: Advanced Blading for Gas Turbines, COST 501-I1, W.P. 1, Review Febr. 1992, ABB MannheimGoogle Scholar
  38. [3.25]
    D.J. Srolovitz, M.J. Luton, R. Petkovic-Luton, D.M. Barnett, W.D. Nix, Acta metall., 32 (1984), 1079–1088CrossRefGoogle Scholar
  39. [3.26]
    W. Blum, B. Reppich, in: B. Wilshire, R.W. Evans (Eds.), Creep Behaviour of Crystalline Solids, 3 (1985), Progress in Creep and Fracture, Pineridge Press, Swansea, 83Google Scholar
  40. [3.27]
    E. Arzt, D.S. Wilkinson, Acta metall., 34 (1986), 1893–1898CrossRefGoogle Scholar
  41. [3.28]
    T.M. Pollock, A.S. Argon, Acta metall. mater., 40 (1992), 1–30CrossRefGoogle Scholar
  42. [3.29]
    T.M. Pollock, A.S. Argon, in: Superalloys 1988, D. Duhl et al. (Eds.), The Metall. Soc., Warrendale/Pa., 285–294Google Scholar
  43. [3.30]
    S. Straub, M. Meier, J. Ostermann, W. Blum, VGB Kraftwerkstechnik, 73 (1993), 744–752Google Scholar
  44. [3.31]
    M.F. Ashby, C. Gandhi, D.M.R. Taplin, Acta Met., 27 (1979), 699–729CrossRefGoogle Scholar
  45. [3.32]
    H. Riedel, Fracture at High Temperatures, Springer, Berlin, 1987, 242Google Scholar
  46. [3.33]
    A.S. Argon, Scripta Met., 17 (1983), 5–12CrossRefGoogle Scholar
  47. [3.34]
    R. Raj, Transactions ASME, J. Engg. Mat. Tech., Apr. 1976, 132–139Google Scholar
  48. [3.35]
    B.F. Dyson, M.J. Rogers, Metal Sci. J., 8 (1974), 261–266Google Scholar
  49. [3.36]
    M.S. Loveday, B.F. Dyson, Acta Metall., 31 (1983), 397CrossRefGoogle Scholar
  50. [3.37]
    R.T. Holt, W. Wallace, Int. Metals Rev., 21 (1976), March, 1–24Google Scholar
  51. [3.38]
    Metals Technology, 11 (1984), gesamtes Oktober-HeftGoogle Scholar
  52. [3.39]
    H. Riedel, Fracture at High Temperatures, Springer, Berlin, 1987, 121 ff.Google Scholar
  53. [3.40]
    M.P. Seah, Acta Met., 28 (1980), 955–962CrossRefGoogle Scholar
  54. [3.41]
    R.H. Bricknell, D.A. Woodford, in: Creep and Fracture of Engineering Materials and Structures, B. Wilshire, D.R.J. Owen (Eds.), Pineridge Press, Swansea, 1981, 249Google Scholar
  55. [3.42]
    H. Riedel, Fracture at High Temperatures, Springer, Berlin, 1987, 135f.Google Scholar
  56. [3.43]
    R.W. Evans, B. Wilshire, in: Creep and Fracture of Engineering Materials and Sructures, B. Wilshire, D.R.J. Owen (Eds.), Pineridge Press, Swansea, 1981, 303Google Scholar
  57. [3.44]
    B.A. Wilcox, A.H. Clauer, Acta Metall., 20 (1972), 743–757CrossRefGoogle Scholar
  58. [3.45]
    R.F. Singer, E. Arzt, in: Superalloys 1984, M. Gell et al. (Eds.), The Metall. Soc. of AIME, Warrendale (PA), 1984, 367Google Scholar
  59. [3.46]
    H. Zeizinger, E. Arzt, Z. Metallkde., 79 (1988), 774–781Google Scholar
  60. [3.47]
    F.C. Monkman, N.J. Grant, Proc. ASTM, 56 (1956), 593Google Scholar
  61. [3.48]
    D. Lonsdale, P.E.J. Flewitt, Met. Sci., 12 (1978), 264–265CrossRefGoogle Scholar
  62. [3.49]
    F. Larson, J. Miller, Trans. ASME, 74 (1952), 765–775Google Scholar
  63. [3.50]
    D. McLean, Account of Creep Studies, COST 50, EEC Contract ref. no. ECI-1122B7230–83-UK, 1985Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig / Wiesbaden 1998

Authors and Affiliations

  • Ralf Bürgel
    • 1
  1. 1.MelleDeutschland

Personalised recommendations