Advertisement

Vector Fields on Manifolds

Chapter
Part of the Arbeitsgemeinschaft für Forschung des Landes Nordrhein-Westfalen book series (AFLNW, volume 200)

Zusammenfassung

This paper is a contribution to the topological study of vector fields on manifolds. In particular we shall be concerned with the problems of existence of r linearly independent vector fields. For r = 1 the classical result of H. Hopf asserts that the vanishing of the Euler characteristic is the necessary and sufficient condition, and our results will give partial extensions of Hopfs theorem to the case r > 1. A recent article by E. Thomas [10] gives a good survey of work in this general area.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Topology of Elliptic Operators

  1. [1]
    M. F. Atiyah, Amer. Math. Symposium on Global Analysis (Berkeley, 1968).Google Scholar
  2. [2]
    M. F. Atiyah, R. Bott and A. A. Shapiro, Clifford modules, Topology, 3 (Suppl. 1) (1964), 3–38.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    M. F. Atiyah and F. Hirzebruch, Riemann-Roch theorems for differentiable manifolds, Bull. Amer. Math. Soc. 65 (1959), 276–281.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    M. F. Atiyah and I. M. Singer, The index of elliptic operators: I, Ann. of Math. 87 (1968), 484–530.MathSciNetzbMATHGoogle Scholar
  5. [5]
    The index of elliptic operators: III, Ann. of Math. 87 (1968), 546–604.Google Scholar
  6. [6]
    Index theory for skew-adjoint Fredholm operators, Publ. Math. I.H.E.S. (1970) (to appear).Google Scholar
  7. [7]
    D. Frank (to appear).Google Scholar
  8. [8]
    G. Lusztig, J. Milnor and F. Peterson, Semi-characteristics and cobordism, Topology, 8 (1969), 357–359.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    K. H. Mayer, Elliptische Differentialoperatoren und Ganzzahligkeitssätze für charakteristische Zahlen, Topology, 4 (1965), 295–313.zbMATHGoogle Scholar
  10. [10]
    E. Thomas, Vector fields on manifolds, Bull. Amer. Math. Soc. 75 (1969), 643–683.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1970

Authors and Affiliations

  1. 1.Oxford UniversityUK

Personalised recommendations