Skip to main content

Partialdruckmessgeräte und Leckdetektoren

  • Chapter
Book cover Wutz Handbuch Vakuumtechnik
  • 1509 Accesses

Zusammenfassung

In diesem Kapitel erfahren Sie, wie verschiedene Gasarten im Vakuum detektiert werden. Auch Lecksucher detektieren spezielle Gase und werden deshalb hier beschrieben.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. DIN 284 10, Vakuumtechnik; Massenspektrometrische Partialdruck-Meßgeräte, Begriffe, Kenngrößen, Betriebsbedingungen, 1968.

    Google Scholar 

  2. J. A. Basford, M. D. Boeckmann, R. E. Ellefson, A. R. Filippelli, D. H. Holkeboer, L. Lieszkovszky and C. M. Stupak, J. Vac. Sci. Technol. A 11 (1993), A22.

    Google Scholar 

  3. NIST, EPA, NIH Mass Spectral Data Base, Version 1, 1995 (Software File) or Internet search http://webbook.nist.gov/chemistry/form-ser.html.

    Google Scholar 

  4. R.L. Summers, NASA Technical Note, NASA TN D5285, (1969).

    Google Scholar 

  5. A.J. Dempster, Physical Review, 11 (1918), 316.

    Article  ADS  Google Scholar 

  6. W. Bleakney, Physical Review, 34 (1929), 157.

    Article  ADS  Google Scholar 

  7. A.O.C. Nier, Rev. Sci. Instru. 11 (1940), 212.

    Article  ADS  Google Scholar 

  8. A.O.C. Nier, Rev. Sci. Instru. 18 (1947), 398.

    Article  ADS  Google Scholar 

  9. M. G. Inghram and R.J. Hayden, A Handbook on Mass Spectrometry, Nuclear Science Series, Report No. 14, Washington: National Academy of Science (1954).

    Google Scholar 

  10. H. E. Duckworth, R. C. Barber and V. S. Venkatasubramanian, Mass Spectrometry, Cambridge University Press, 45 (1990).

    Google Scholar 

  11. ] W.E. Austin, A.E. Holme and J.H. Leck, in Quadrupole Mass Spectrometry and Its Applications, J.H Dawson, Ed., American Institute of Physics, Woodbury, NY, (1995), 121–152.

    Google Scholar 

  12. W.M. Brubaker, NASA Report, NASW 1298 (1970).

    Google Scholar 

  13. G. A. Hofmann, Vacuum 24 (1974), 65.

    Article  Google Scholar 

  14. Inficon, Quadrupolanalysatoren und zugehörige lonenquellen,Broschüre vina07d1.

    Google Scholar 

  15. J. Blessing, Research & Development September (1987).

    Google Scholar 

  16. INFICON, Closed Ion Source,Bulletin BR31D38K, 1992.

    Google Scholar 

  17. J. Koprio, P. Muralt, R. Rettinghaus, and G. Strasser, Vacuum 41 (1990), 2106–2108.

    Article  Google Scholar 

  18. Inficon, Quadrupolanalysatoren und zugehörige Ionenquellen,Broschüre vina07d1.

    Google Scholar 

  19. W. H. Kohl, Handbook of Materials and Techniques for Vacuum Devices, American Institute of Physics, Woodbury, NY, (1995), 487–502.

    Google Scholar 

  20. Ibid. pp 262–264; 240.

    Google Scholar 

  21. INFICON, „Ion-Molecule Reactions“,Technical Note 2002.

    Google Scholar 

  22. P.A. Redhead, J.P. Hobson and E.V. Komelsen, The Physical Basis of Ultrahigh Vacuum, American Institute of Physics, Woodbury, NY, (1993), 174–175.

    Google Scholar 

  23. F. Watanabe, J. Vac. Sci. Technol. A 8 (1990), 3890.

    Article  ADS  Google Scholar 

  24. F. Watanabe, and A. Kasai, J. Vac. Sci. Technol. A 13 (1995), 497.

    Article  ADS  Google Scholar 

  25. W.K. Huber, N. Müller, and G. Rettinghaus, Vacuum 41 (1990), 2103–2105.

    Article  Google Scholar 

  26. N. Müller, Vacuum 44 (1993), 623–626.

    Article  Google Scholar 

  27. R.E. Ellefson, W.E. Moddeman and H.F. Dylla, J. Vac. Sci. Technol. 18 (1981), 1062.

    Google Scholar 

  28. W. Bleakney and J. A. Hipple, Phys. Rev. 53 (1938), 521.

    Article  ADS  Google Scholar 

  29. C.E. Robinson and L. G. Hall, Rev. Sci. Instr. 27 (1956), 504.

    Article  ADS  Google Scholar 

  30. H. Sommer, H. A. Thomas and J. A. Hipple, Phys. Rev. 82 (1951), 697.

    Article  ADS  Google Scholar 

  31. D. Alpert and R. S. Buritz, J. Appl. Phys., 25 (1954), 202.

    Article  ADS  Google Scholar 

  32. W. A. Brydon, R. C. Benson, S.A. Ecelberger, T. E. Phillips, R. J. Cotter, C. Fenselau, Johns Hopkins APL Tech Dig. 16 (1995), 296.

    Google Scholar 

  33. J.R. Gibson and S Taylor, Rapid Communications in Mass Spectrometry, 14 (2000), 1669–1673.

    Google Scholar 

  34. D.H. Holkeboer, T.L. Karandy, F.C. Currier, L.C.Frees and R. E. Ellefson, J. Vac. Sci. Technol. A 16 (1998), 1157.

    Google Scholar 

  35. D. A. Dahl, SIMION 3D Version 7.0 Ion Optics Software.

    Google Scholar 

  36. P.H. Dawson, Quadrupole Mass Spectrometry and Its Applications, American Institute of Physics, AVS Classics Series, Woodbury, NY, (1995), p 13–36.

    Google Scholar 

  37. W. E. Austin, J. H. Leck, J. H. Batey, J. Vac. Sci. Technol. A 10 (1992), 3563.

    Article  ADS  Google Scholar 

  38. L. Lieszkovszky and A.R. Filippelli, J. Vac. Sci. Technol. A 8 (1990), 3838.

    Article  ADS  Google Scholar 

  39. M. C. Cowen, W. Allison and J. H. Batey, Meas. Sci. Technol. 4 (1993), 72.

    Article  ADS  Google Scholar 

  40. M. C. Cowen, W. Allison and J. H. Batey, J. Vac. Sci. Technol. A 12 (1994), 228.

    Article  ADS  Google Scholar 

  41. E.R. Badman and R.G. Cooks, J. Mass Spectrom. 35 (2000), 659–671.

    Article  Google Scholar 

  42. D.H. Holkeboer, Method of Manufacturing a Miniature Quadrupole Using Electrode-Discharge Machining, US Patent 5,852,270, 22 Dec, 1998.

    Google Scholar 

  43. R.J. Ferran and S. Boumsellek, J. Vac. Sci. Technol. A 14 (1996), 1258.

    Google Scholar 

  44. R.R.A. Syros, T.J. Tate, M. M. Ahmad and S. Taylor, IEEE Trans. On Electron Devices, 45 (1998), 2304.

    Google Scholar 

  45. S. Taylor, R.F. Tindall and R.R.A. Syms, J. Vac. Sci. Technol. B, 19 (2001), 557.

    Article  Google Scholar 

  46. C.B. Freidhoff, R.M. Young, S. Sriram, T.T. Braggins, T.W. O’Keefe, J.D. Adam, H.C. Nathanson, R.R.A. Syms, T.J. Tate, M.M. Ahmad, S. Taylor, and J. Tunstall, J. Vac. Sci. Technol. A 17 (1996), 2300.

    Google Scholar 

  47. J.A. Diaz, C.F. Giese and W.R. Gentry, J. Am. Soc. Mass Spectrom. 12 (2001), 619–632.

    Article  Google Scholar 

  48. Hamamatsu, Inc, Model R5150 series Compact Ion Detector Brochure.

    Google Scholar 

  49. Burle Technologies, Inc. Channeltron0 Electron Multiplier Handbook for Mass Spectrometer Applications, (2001).

    Google Scholar 

  50. Detector Technology, Inc. Tech Note: Theoretical Life Equation for Channel Electron Multipliers.

    Google Scholar 

  51. W.E. Parfitt, T.L. Karandy, L.C. Frees, R.E. Ellefson, Ion Collector Assembly, US Patent 6,091,068, 18 July, 2000.

    Google Scholar 

  52. B. Laprade and R. Cochran, Operation of Microchannel Plate Based Detectors at Elevated Pressure, American Society for Mass Spectrometry Conference, 1997.

    Google Scholar 

  53. G. Peter, A. Koller, S. Vazques, Proceedings of the 3711’ National Symposium of the American Vacuum Society, Toronto, Ontario, Oct. 1990.

    Google Scholar 

  54. J. A. Koprio, G. Peter, and H. Fischer, Vacuum 38 (1988), 784.

    Article  Google Scholar 

  55. E. Wieers, Thesis. Limburgs Universitair Centrum, Dipenbeek, Belgium, June 2002.

    Google Scholar 

  56. H. Kersten, H. Deutsch, H. Steffen, G.M.W. Kroessen, R. Hippler, Vacuum 63 (2001) 385–431.

    Article  Google Scholar 

  57. E.Lanzinger, K. Jousten, M. Kühne, Partial pressure measurement by means of infrared laser absorption spectroscopy, Vacuum 51 (1998), 47–51.

    Google Scholar 

  58. J. F. McAndrew, R. S. Inman, B. Jurcik, Gaseous contaminant measurement for semiconductor processing by diode laser spectroscopy, J. of the Inst. of Environmental Sci. Sept/Oct 1995, 22–29.

    Google Scholar 

  59. R. S. Inman, J. F. McAndrew, Application of tunable diode laser absorption spectroscopy to trace moisture measurements in gases, Anal. Chem 66 (1994), 2471–2479.

    Article  Google Scholar 

  60. J.F. McAndrew, R.S. Inman, Using diode laser spectroscopy to evaluate techniques for acceleration of etch chamber evacuation,: J. Vac. Sci. Technol. A 14 (1996), 1266–1272.

    Article  ADS  Google Scholar 

  61. P. Zalicki, R.N. Zare, Cavity ring-down spectroscopy for quantitative absorption measurements, J. Chem. Phys. 102 (1995), 2706–2717.

    Article  ADS  Google Scholar 

  62. J. T. Hodges, J. P Looney, R.D. van Zee, Laser bandwidth effects in quantitative cavity ring-down spectroscopy, Applied Optics 35 (1996), 4112–4116.

    Article  ADS  Google Scholar 

  63. J. T. Hodges, J. P Looney, R.D. van Zee, Response of a ring-down cavity to an arbitrary excitation, J. Chem. Phys. 105 (1996), 10278–10288.

    Article  ADS  Google Scholar 

  64. J. P. Looney, Measurement of CO pressures in the UHV regime using resonanc-enhanced mulitphotonionization time-of-flight mass spectroscopy, J. Vac. Sci. Technol. A 11 (1993), 3111–3120.

    Article  ADS  Google Scholar 

  65. J. A. Neill, M. L. Passow, T.J. Cotler, Infrared absorption spectroscopy for monitoring condensible gases in chemical vapor deposition applications, J. Vac. Sci. T.chnol. A 12 (1994), 839–845.

    Article  ADS  Google Scholar 

  66. A.O. Nier, C. M. Stevens, Mass spectrometer for leak detection, J. Appl. Phys. 18 (1947) 30.

    Article  ADS  Google Scholar 

  67. A. Nerken, History of helium leak detection, J. Vac. Sci. Technol. A 9 (1991), 2036.

    Google Scholar 

  68. G. Reich, The principle of Helium enrichment in a counter flow leak detector with a turbo molecular pump with two inlets, J. Vac. Sci. Technol. A 5 (1987), 2641.

    Google Scholar 

  69. M. Hablanian, Use of oil free mechanical pumps with leak detectors, J. Vac. Sci. Technol. A 9 (1991), 2039.

    Google Scholar 

  70. A. Liepert, P. Lessard, Design and operation of scroll-type dry primary vacuum pumps, J. Vac. Sci. Technol. A 19, 2001, 1708.

    Article  ADS  Google Scholar 

  71. W. Jitschin, D. Wandrey, Temperature dependence of the leak rate of helium diffusion leak artefacts, Vacuum, 38 (1988), 503.

    Article  Google Scholar 

  72. J.L. Chamberlin, The modelling of standard gas leaks, J. Vac. Sci. Technol. A 7 (1989), 2408.

    Google Scholar 

  73. W. Große Bley, Temperature dependence and long-term stability of helium reference leaks, Vacuum, 41 (1990), 1863.

    Google Scholar 

  74. G. Große, G.,Messer, Summary abstract: calibration and long-term stability of helium reference leaks, J. Vac. Sci. Technol. A 5 (1987), 2661.

    Google Scholar 

  75. J. Spiess, Die Lecksuchröhre, Diplomarbeit KFK Karlsruhe 1966.

    Google Scholar 

  76. M. Audi, An ion pump based leak detector, Vacuum, 41 (1990), 1856.

    Google Scholar 

Download references

Authors

Editor information

Karl Jousten

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Müller, N., Ellefson, R., Jousten, K., Große-Bley, W. (2004). Partialdruckmessgeräte und Leckdetektoren. In: Jousten, K. (eds) Wutz Handbuch Vakuumtechnik. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-96971-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-96971-2_13

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-322-96972-9

  • Online ISBN: 978-3-322-96971-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics