Skip to main content

Vakuummessgeräte für Totaldruck

  • Chapter
  • 1511 Accesses

Zusammenfassung

In diesem Kapitel erfahren Sie, welches die gebräuchlichsten Vakuummessgeräte sind und wie sie funktionieren. Auch Gasflussmessgeräte werden behandelt.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. A. Wolf, An Elementary Theory of the Bourdon Gage, J. of Appl. Mechanics (1946), 207 … 210.

    Google Scholar 

  2. F. B. Jennings, Theories on Bourdon Tubes, Transactions of the ASME (1956), 55 … 64.

    Google Scholar 

  3. A. R. Olson und I. L. Hurst, J. Chem. Phys. 51 (1929), 2378.

    Google Scholar 

  4. K. W. Bonfig, Technische Druck-und Kraftmessung, expert Verlag, 1988.

    Google Scholar 

  5. P.A. Redhead, The measurement of vacuum pressures, J. Vac. Sci. Techn. A 2 (1984) 132 … 138.

    Article  ADS  Google Scholar 

  6. J. K. N.Sharma, D. R. Sharma und A. C. Gupta, Zero shift in the differential capacitance diaphragm geuges due to the change in line pressure, J. Vac. Sci. and Techn. A 9 (1991), 2389 … 2393.

    Article  ADS  Google Scholar 

  7. T. Takaishi und Y. Sensui, Thermal transpiration effect of hydrogen, rare gases and methane, Trans. Faraday Soc. 59 (1963), 2503 … 2514.

    Article  Google Scholar 

  8. S. Chu Liang, Some measurements of thermal transpiration, J. Appl. Phys. 22 (1951), 148 … 153.

    Article  ADS  Google Scholar 

  9. K. F. Poulter et al., Thermal transpiration correction in capacitance manometers, Vacuum 33 (1983), 311 … 316.

    Article  Google Scholar 

  10. J. Setina, Metrologia 36, 623 … 626 (1999).

    Article  ADS  Google Scholar 

  11. W. Jitschin und P. Röhl, Quantitative study of the thermal transpiration effect in vacuum gauges, J. Vac. Sci. and Techn. A 5 (1987), 372 … 375.

    Article  ADS  Google Scholar 

  12. O. E. Meyer, Pogg. Ann. 125 (1865), 177.

    Google Scholar 

  13. J.C. Maxwell, Phil. Trans. R. Soc. 157 (1866), 249.

    Article  Google Scholar 

  14. A. Kundt und E. Warburg, Pogg. Ann. 155 (1875), 337.

    Google Scholar 

  15. W. Sutherland, Phil. Mag. Ser. 5 42 (1896), 373.

    Google Scholar 

  16. J. L. Hogg, Proc. Am. Acad. Arts Sci. 42 (1906), 115.

    Article  Google Scholar 

  17. F. T. Holmes, Rev. Sci. Instr. 8 (1937), 444.

    Article  ADS  Google Scholar 

  18. J. W. Beams, J. L. Young and J. W. Moore, J. Appl. Phys. 17 (1946), 886.

    Article  ADS  Google Scholar 

  19. J. W. Beams, D. M. Spitzer, Jr., and J. P. Wade, Jr., Rev. Sci. Instr. 33 (1962), 151.

    Article  ADS  Google Scholar 

  20. J. K.. Fremerey, Rev. Sci. Instr. 44 (1973) 1396 … 1397.

    Article  ADS  Google Scholar 

  21. J.K. Fremerey, Patent.

    Google Scholar 

  22. J. K. Fremerey, Spinning rotor vacuum gauges, Vacuum 32 (1982), 685 … 690.

    Article  Google Scholar 

  23. J. K. Fremerey, The spinning rotor vacuum geuge, J. Vac. Sci. Technol. A 3 (1985), 1715 … 1720.

    Article  ADS  Google Scholar 

  24. A. Weller, Temperature determination of freely rotating bodies, Rev. Sci. Instr. 54 (1983), 952 … 957.

    Article  ADS  Google Scholar 

  25. J.K. Fremerey, Theoretical Model for Calculation of Molecular drag on tangentially moving rough surfaces, Proc. 8`“ Int. Vac. Congr, 4d’ ICSS and 3rd ECOSS, Vol II, Cannes (1980), 869 … 872.

    Google Scholar 

  26. B. E. Lindenau and J. K. Fremerey, Linearization and temperature compensation up to one atmosphere for the SRG, J. Vac. Sci. Technol. A 9 (1991), 2737 … 2743.

    Article  ADS  Google Scholar 

  27. J. Setina and J. P. Looney, Behaviour of commercial SRGs in the transition regime, Vacuum 44 (1993), 577 … 580.

    Article  Google Scholar 

  28. S. Dittmann, B. Lindenau, and C.R. Tilford, The molecular drag gauge as a calibration standard,, J. Vac. Sci. Technol. A 7 (1989), 3356 … 3360.

    Article  ADS  Google Scholar 

  29. P. Röhl and W. Jitschin, Vacuum 38 (1988), 507.

    Article  Google Scholar 

  30. M. Ono et al., Design and performance of a quartz oscillator vacuum gauge with a controller, J. Vac. Sci. Technol. A 3 (1985), 1746.

    Google Scholar 

  31. M. Hirata, K. Kokobun, M. Ono, and K. Nakayama, Size effect of a quartz oscillator on its characteristics as a friction vacuum gauge,, J. Vac. Sci. Technol. A 3 (1985), 1742 … 1745.

    Article  ADS  Google Scholar 

  32. M. Pirani, Deutsche Phys. Ges. Verk. 8 (1906), 686.

    Google Scholar 

  33. J. H.Leck, Total and partial pressure measurement in vacuum systems,Blackie, 1989, S. 49 ff.

    Google Scholar 

  34. L. D. Hinkle and C. F. Mariano, Toward understanding the fundamental mechanism and properties of the thermal mass flow controller, J. Vac. Sci. Technol. A 9 (1991), 2043 … 2047.

    Article  ADS  Google Scholar 

  35. S. A. Tison, A critical evaluation of thermal mass flow meters, J. Vac. Sci. Technol. A 14 (1996), 2582 … 2591.

    Article  ADS  Google Scholar 

  36. O. von Baeyer, Phys. Zeitschrift 10 (1909), 168.

    Google Scholar 

  37. O. E. Buckley, Proc. Natl. Acad. Sci. USA 2 (1916), 683.

    Article  ADS  Google Scholar 

  38. S. Dushman, J. M. Lafferty, Scientific foundations of VacuumTechnique, 2nd Edition, John Wiley and Sons, 1962.

    Google Scholar 

  39. F. M. Penning, Physica 4 (1937), 71 und Philips Tech. Rev 2 (1937), 201.

    Google Scholar 

  40. F. M. Penning, Die Glimmentladung bei niedrigem Druck zwischen koaxialen Zylindern in einem axialen Magnetfeld Physica 3(1936), 873 und US Patent, 1939 verliehen.

    Google Scholar 

  41. F. M. Penning and K. Nienhuis, Construction and Application of a New Design of the Philips Vacuum Gauge, Philips Tech. Rev. 11 (1949), 116.

    Google Scholar 

  42. C. R. Tilford, Sensitivity of hot cathode ionization gauges, J. Vac. Sci. Techn., A3 (1985), 546 … 549.

    Google Scholar 

  43. Chr. Edelmann und P. Engelmann, Vak.-Techn., 31 (1982) 2 … 10.

    Google Scholar 

  44. Z.H. Kno, Vacuum 31 (1981) Nr. 7, S. 303/08.

    Google Scholar 

  45. Wang, Yu-zhi, A fundamental theory of high pressure hot cathode ionization gauges, Vacuum 34 (1984), 775 … 778.

    Article  Google Scholar 

  46. G. J. Schulz and A. V.Phleps, Rev. Sci. Instr. 28 (1957), 1051.

    Google Scholar 

  47. R. T. Bayard and D. Alpert, Rev. Sci. Instr. 21 (1950), 571.

    Article  ADS  Google Scholar 

  48. P. C. Arnold, D. G. Bills, M. D. Borenstein, S. C. Borichevsky, J. Vac. Sci. Technol. A 12 (1994), 580 … 586.

    ADS  Google Scholar 

  49. K. Schmidt und U. Bergner, Stabilität von Hochvakuum-Meßröhren, Vakuum in Forschung und Praxis (1996), 177 … 182.

    Google Scholar 

  50. R. N. Peacock and N. T. Peacock, J. Vac. Sci. Techn., A 8 (1990), 3341.

    Article  ADS  Google Scholar 

  51. A. van Oostrom„ Vac. Symp. Trans. Comm. Vac. Tech., 1 (1961), Pergamon, New York, 443.

    Google Scholar 

  52. P. Repa, The residual current of the modulated BA-gauge. Vacuum 36 (1986), 559 … 560.

    Article  Google Scholar 

  53. T. S. Chou, and Z. Q. Tang, Investigation on the low pressure limit of the Bayard-Alpert gauge, J. Vac. Sci. Techn., A4 (1986), 2280 … 2283.

    Google Scholar 

  54. A. R. Filipelli, Residual currents in several commercial ultra high Bayard-Alpert gauges. J. Vac. Sci. Techn., A 5 (1987), 3234 … 3241.

    Article  ADS  Google Scholar 

  55. A. Berman., Total Pressure Measurements in Vacuum Technology. Academic Press (1985).

    Google Scholar 

  56. G. Grosse, et al., Secondary electrons in ion gauges, J. Vac. Sci. Techn., A 5 (1987) 3242.

    Article  ADS  Google Scholar 

  57. U. Harten, et al., Surface effects on the stability of hot cathode ionization gauges, Vacuum 38 (1988), 167 … 169.

    Article  Google Scholar 

  58. P. A. Redhead, Electron stimulated desorption, Vacuum 12 (1962), 267.

    Article  Google Scholar 

  59. P. A. Redhead, Rev. Sci. Instr. 31 (1960), 343.

    Article  ADS  Google Scholar 

  60. J. P. Hobson, J. Vac. Sci. Techn., A 81 (1964), 1.

    ADS  Google Scholar 

  61. J. C. Helmer and W. D. Hayward. Rev. Sci. Instr. 37 (1966), 1652.

    Google Scholar 

  62. S.-W. Han,. et al., Performance of the bent beam ionization gauge in ultrahigh vacuum measurements, Vacuum 38 (1988), 1079 … 1082.

    Article  Google Scholar 

  63. F. Watanabe, Ion spectroscopy gauge: Total pressure measurements down to 10 -12 Pa with discrimination against electron-stimulated-desorption ions. J. Vac, Sci. Techn. A 10 (1992), 3333 … 3339.

    Article  ADS  Google Scholar 

  64. J. M. Lafferty, J. Appl. Phys. 32 (1961), 424.

    Article  ADS  Google Scholar 

  65. W. C. Schuemann, Rev. Sci. Instr. 34 (1963), 700.

    Article  ADS  Google Scholar 

  66. G. Messer, Proc. 8th Int. Vacuum Congr. Cannes (1980), Vol. 2, S. 191 … 194.

    Google Scholar 

  67. J. M. Lafferty, Trans. Am. Vac. Soc. Vac. Symp. 7 (1960) 97.

    Google Scholar 

  68. J. Z. Chen, et al., J. Vac, Sci. Techn., 20 (1982) S. 88/91.

    Google Scholar 

  69. J. Z. Chen, et al., Proc. 9. Intern. Vac. Congr., Madrid (1983), S. 99.

    Google Scholar 

  70. N. Ohsako, J. Vac. Sei. Techn., 20 (1982) S. 1153 … 1155.

    ADS  Google Scholar 

  71. F. Watanabe, Point collector ionization gauge with spherical grid for measuring pressures below 10 -11 Pa, J. Vac. Sci. Techn., A 5 (1987), 242 … 248.

    Article  ADS  Google Scholar 

  72. H. Gentsch„ Inertes Ionisationsvakuummeter mit extrahiertem Kollektor (EXKOLL), Vak. Techn. 36 (1987), 67 … 74.

    Google Scholar 

  73. P. A. Redhead, Ultrahigh Yacuum pressure measurements: Limiting processes, J. Vac. Sci. Technol. A 5 (1987), 3215 … 3223.

    Article  ADS  Google Scholar 

  74. T. E. Madey, Surface phenomena and their influence on ultrahigh vacuum gauges. J. Techn. A 5 (1987), 3249 (Summary abstract).

    Google Scholar 

  75. C.Oshima and A. Otuko, J. Vac, Sci. Techn. A 12 (1994), 3233.

    Article  ADS  Google Scholar 

  76. D. Morrison, Lethal Voltages from Ion/Gas Discharge Interactions, Le Vide 41 (1986) 297 … 304.

    Google Scholar 

  77. W. Knauer„ J. Appl. Phys. 33 (1962) 2093.

    Google Scholar 

  78. W. Knauer et al., Appl. Phys. Letters 3 (1963) 1 11

    Google Scholar 

  79. D. Bohm, et al., National Nuclear Energy Series 1, 5 (1949), 77 ff. and 173 ff.

    Google Scholar 

  80. P. A. Redhead., Can. J. Phys. 37 (1959), 255.

    Article  Google Scholar 

  81. J. P.Hobson, u. P. A. Redhead, Can. J. Phys. 36 (1958), 271.

    Article  ADS  Google Scholar 

  82. J. H. Leck, J. Sci. Instr. 30 (1953), 271.

    Article  ADS  Google Scholar 

  83. G. Barnes, J. Gaines and J. Kees, Vacuum 12 (1962), 141.

    Article  Google Scholar 

  84. T.N. Rhodin and L.H. Rovner, Trans. 7th Nat. Symp. Vac. Technol. (1960), 228.

    Google Scholar 

  85. E. V. Kornelsen, Trans. 7th Nat. Symp. Vac. Technol. (1960), 29.

    Google Scholar 

  86. D. Li and K. Jousten, Comparison of some metrological characteristics of hot and cold cathode ionization gauges, Vacuum 70 (2003), 531 … 541.

    Article  Google Scholar 

  87. D. Li and K. Jousten, Comparison fo the stability of hot and cold cathode ionization gauges,J. Vac. Sci. Technol A 21 (2003), 937…946..

    Google Scholar 

  88. K. Jousten, Comparison of the sensitivities of ionization gauges to hydrogen and deuterium, Vacuum 46 (1995), 9 … 12.

    Article  Google Scholar 

  89. K. Jousten, Temperature corrections for the calibration of vacuum gauges, Vacuum 49 (1998), 81…87.

    Google Scholar 

Download references

Authors

Editor information

Karl Jousten

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Jousten, K. (2004). Vakuummessgeräte für Totaldruck. In: Jousten, K. (eds) Wutz Handbuch Vakuumtechnik. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-96971-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-96971-2_12

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-322-96972-9

  • Online ISBN: 978-3-322-96971-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics