Advertisement

Metallorganische Katalyse

  • Christoph Elschenbroich
  • Albrecht Salzer
Part of the Teubner Studienbücher Chemie book series (TSBC)

Zusammenfassung

pro memoria:

Ein Katalysator erhöht die Geschwindigkeit einer thermodynamisch möglichen Reaktion durch Eröffnung eines Weges niedriger Aktivierungsenergie. Existieren mehrere Reaktionswege, so kann ein Katalysator erhöhte Produktspezifität bewirken, indem er nur eine der konkurrierenden Reaktionsfolgen beschleunigt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. C.A.TOLMAN, Chem. Soc. Rev. 1 (1972) 337CrossRefGoogle Scholar
  2. The 16 and 18 Electron Rule in Organometallic Chemistry and Homogeneous CatalysisGoogle Scholar
  3. F.R.HARTLEY, Reidel, Dordrecht (1985)Google Scholar
  4. Supported Metal Complexes. A New Generation of CatalystsGoogle Scholar
  5. J.K.KOCHI, Academic Press, New York (1978)Google Scholar
  6. Organometallic Mechanisms and CatalysisGoogle Scholar
  7. J.K.KOCHI, J. Organomet. Chem. 300 (1986) 139CrossRefGoogle Scholar
  8. Electron Transfer and Transient Radicals in Organometallic ChemistryGoogle Scholar
  9. D.ASTRUC, Angew. Chem. 100 (1988) 662Google Scholar
  10. Elektrokatalyse in der OrganoübergangsmetallchemieGoogle Scholar
  11. K.C.BISHOP III, Chem. Rev. 76 (1976) 461CrossRefGoogle Scholar
  12. Transition Metal Catalysed Rearrangements of Small Ring Organic MoleculesGoogle Scholar
  13. G.W.PARSHALL, J. Mol. Catal. 4 (1978) 243CrossRefGoogle Scholar
  14. Industrial Applications of Homogeneous Catalysis. A ReviewGoogle Scholar
  15. C.MASTERS, Chapman and Hall, London (1981) Homogeneous Transition-Metal Catalysis - a Gentle ArtGoogle Scholar
  16. J.FALBE, H.BAHRMANN, Chem. Unserer Zeit 15 (1981) 37 Homogene Katalyse in der TechnikGoogle Scholar
  17. F.G.A STONE, R.WEST, Eds., Adv. Organomet. Chem. 17 (1979) 1-492Google Scholar
  18. Catalysis and Organic SynthesisGoogle Scholar
  19. J.F.WALLER, J. Mol. Catal. 31 (1985) 123CrossRefGoogle Scholar
  20. Recent Achievements, Trends and Prospects in Homogeneous CatalysisGoogle Scholar
  21. C.P.CASEY, Ed., J. Chem. Ed. 63 (1986) 188Google Scholar
  22. Symposium: Industrial Applications of Organometallic Chemistry and CatalysisGoogle Scholar
  23. R.F.HECK, Acc. Chem. Res. 12 (1979) 146 Palladium-Catalysed Reactions of Organic Halides with OlefinsGoogle Scholar
  24. J.-L. HERRISON, Y.CHAUVIN, Makromol. Chem. 141 (1970) 161 Catalyse de transformation des Oléfines par les Complexes de tungstèneGoogle Scholar
  25. T.J.KATZ, Adv. Organomet. Chem. 16 (1977) 283 The Olefin Metathesis ReactionGoogle Scholar
  26. R.H.GRUBBS, Comprehensive Organometallic Chemistry 8 (1982) 499 Alkene and Alkyne Metathesis ReactionsGoogle Scholar
  27. R.R.SCHROCK, J. Organomet. Chem. 300 ( 1986) 249 On the Trail of Metathesis CatalystsGoogle Scholar
  28. P.W.JOLLY, G.WILKE, Academic Press, New York (1974, 1975 ) The Organic Chemistry of Nickel, Vol. 1, 2Google Scholar
  29. H.SINN, W.KAMINSKY, Adv. Organomet. Chem. 18 (1980) 99 Ziegler-Natta CatalysisGoogle Scholar
  30. R.F.JORDAN, J. Chem. Ed. 65 (1988) 285Google Scholar
  31. Cationic Metal-Alkyl Olefin Polymerisation CatalystsGoogle Scholar
  32. J.E.BÄCKVALL, B.AKERMARK, S.O.LJUNGGREN, J. Am. Chem. Soc. 101 (1979) 2411Google Scholar
  33. Stereochemistry and Mechanism for the Palladium(II)-Catalysed Oxidation of Ethene in Water (the WACKER-Process)Google Scholar
  34. J.E.BÄCKVALL, Acc. Chem. Res. 16 (1983) 335CrossRefGoogle Scholar
  35. Palladium in some Selective Oxidation ReactionsGoogle Scholar
  36. H.BRUNNER, Chem. Unserer Zeit 14 (1980) 177 Asymmetrische Katalyse mit Rhodium-Phosphan-KomplexenGoogle Scholar
  37. W.S.KNOWLES, Acc. Chem. Res. 16 (1983) 106CrossRefGoogle Scholar
  38. Asymmetric HydrogenationGoogle Scholar
  39. B.S.BOSNICH, Topics Stereochem. 12 (1981) 119CrossRefGoogle Scholar
  40. Asymmetric Synthesis Mediated by Transition Metal ComplexesGoogle Scholar
  41. B.BOSNICH, Chem. Br. 20 (1984) 808Google Scholar
  42. Asymmetric CatalysisGoogle Scholar
  43. H.BRUNNER, J. Organomet. Chem. 300 (1986) 39CrossRefGoogle Scholar
  44. Enantioselective Catalysis with Transition Metal ComplexesGoogle Scholar
  45. R.NOYORI, Science 248 (1990) 1194CrossRefGoogle Scholar
  46. Chiral Metal Complexes as Discriminating Molecular CatalystsGoogle Scholar
  47. M.NOGRADI, VCH, Weinheim (1987)Google Scholar
  48. Stereoselective SynthesisGoogle Scholar
  49. E.L.MUETTERTIES, J.STEIN, Chem. Rev. 79 (1979) 479CrossRefGoogle Scholar
  50. Mechanistic Features of Catalytic Carbon Monoxide Hydrogenation ReactionsGoogle Scholar
  51. P.C.FORD, A.ROKOCKI, Adv. Organomet. Chem. 28 (1988) 139 Nucleophilic Activation of Carbon Monoxide: Applications to Homogeneous Catalysis by Metal Carbonyls of the Water Gas Shift and Related ReactionsGoogle Scholar
  52. A.BEHR, Angew. Chem. 100 (1988) 681Google Scholar
  53. Kohlendioxid als alternativer Ci-Baustein: Aktivierung durch Übergangs-metallkomplexeGoogle Scholar
  54. P.BRAUNSTEIN, Chem. Rev. 88 (1988) 681Google Scholar
  55. Reactions of Carbon Dioxide with Carbon-Carbon Bond Formation Catalysed by Transition-Metal ComplexesGoogle Scholar
  56. S.HENDERSON, R.A.HENDERSON, Adv. Phys. Org. Chem. 23 (1987) 1 The Nucleophilicity of Metal-Complexes Toward Organic MoleculesGoogle Scholar
  57. C.A.TOLMAN, J. Chem. Ed. 63 (1986) 199Google Scholar
  58. HydrocyanationGoogle Scholar
  59. E.C.CONSTABLE, Polyhedron 3 (1984) 1037CrossRefGoogle Scholar
  60. Cyclometallated Complexes Incorporating a Heterocyclic Donor AtomGoogle Scholar
  61. R.G.BERGMAN, Science 223 (1984) 902CrossRefGoogle Scholar
  62. Activation of Alkanes with Organotransition Metal ComplexesGoogle Scholar
  63. J.-Y.SAILLARD, R.HOFFMANN, J. Am. Chem. Soc. 106 (1984) 2006 C-H and H-H Activation in Transition Metal Complexes and on SurfacesGoogle Scholar
  64. J.HALPERN, Inorg. Chim. Acta 100 (1985) 41Google Scholar
  65. Activation of C-H Bonds by Metal Complexes: Mechanistic, Kinetic and Thermodynamic ConsiderationsGoogle Scholar
  66. R.H.CRABTREE, Chem. Rev. 85 (1985) 245CrossRefGoogle Scholar
  67. Organometallic Chemistry of AlkanesGoogle Scholar
  68. M.BROOKHART, M.L.H.GREEN, Prog. Inorg. Chem. 36 (1988) 1Google Scholar
  69. Carbon-Hydrogen-Transition Metal BondsGoogle Scholar
  70. P.L.WATSON, G.W.PARSHALL, Acc. Chem. Res., 18 (1985) 51CrossRefGoogle Scholar
  71. Organolanthanoids in CatalysisGoogle Scholar
  72. G.J.KUBAS, Acc. Chem. Res. 21 (1988) 120CrossRefGoogle Scholar
  73. Molecular Hydrogen Complexes: Coordination of a -bond to Transition MetalsGoogle Scholar
  74. A.D.RYABOV, Chem. Rev. 90 (1990) 403CrossRefGoogle Scholar
  75. Mechanisms of Intramolecular Activation of C-H Bonds in Transition-Metal ComplexesGoogle Scholar

Copyright information

© B. G. Teubner Stuttgart 1988

Authors and Affiliations

  • Christoph Elschenbroich
    • 1
  • Albrecht Salzer
    • 2
  1. 1.Universität MarburgMarburgDeutschland
  2. 2.Technische Hochschule AachenZürichSchweiz

Personalised recommendations