Advertisement

σ,π-Donator/π—Akzeptor-Liganden

  • Christoph Elschenbroich
  • Albrecht Salzer
Chapter
Part of the Teubner Studienbücher Chemie book series (TSBC)

Zusammenfassung

Gemeinsames Merkmal der umfangreichen Klasse der π-Komplexe ist, dass sowohl die L→M Donator-als auch die L← M-Akzeptor-Wechselwirkung über Ligandorbitale erfolgt, die bezüglich der intra-Ligand Bindung π-Symmetrie besitzen. Die Ligand-Metallbindung in π-Komplexen enthält immer eine L←M π-Akzeptorkomponente, die L→M Donatorkomponenten können, wie bei den entspechenden Liganden näher ausgeführt, σ-Symmetrie (Monoolefine) oder σ-und π-Symmetrie (Oligoolefine, Enyle, π-Perimeter) aufweisen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. M.HERBERHOLD, Elsevier, Amsterdam (1974) Metal 7r-Complexes, Vol. 2Google Scholar
  2. D.M.P.MINGOS, Comprehensive Organometallic Chemistry 3 (1982) 1 Bonding of Unsaturated Organic Molecules to Transition MetalsGoogle Scholar
  3. B.AKERMARK, B.ROSS et al., J.Am.Chem.Soc. 99 (1977) 4617 Chemical Reactivity and Bonding of Ni-ethene Complexes. An ab initio MO-SCF StudyGoogle Scholar
  4. G.DEGANELLO, Academic Press, New York (1979) Transition Metal Complexes of Cyclic PolyolefinsGoogle Scholar
  5. E.A.KÜRNER VON GUSTORF, F.W.GREVELS, I.FISCHLER, Academic Press, New York (1978)Google Scholar
  6. The Organic Chemistry of Iron Vol.1Google Scholar
  7. F.G.A.STONE, Acc. Chem. Res. 14 (1981) 318 "Ligand-Free" Platinum CompoundsGoogle Scholar
  8. T.A.ALBRIGHT, Acc. Chem. Res. 15 (1982) 149Google Scholar
  9. Rotational Barriers and Conformations in Transition-Metal ComplexesGoogle Scholar
  10. M.BROOKHART, M.L.H.GREEN, J. Organomet. Chem. 250 (1983) 395 Carbon-Hydrogen-Transition Metal BondsGoogle Scholar
  11. R.H.CRABTREE, D.G.HAMILTON, Adv. Organomet. Chem. 28 (1988) 299 H-H, C-H and Related sigma-Bonded Groups as LigandsGoogle Scholar
  12. J.E.BÄCKVALL, Acc. Chem. Res. 16 (1983) 335 Palladium in Some Selective Oxidation ReactionsGoogle Scholar
  13. D.J.DARENSBOURG, R.A.KUDAROVSKY, Adv. Organomet. Chem. 22 (1983) 132 The Activation of Carbon Dioxide by Metal ComplexesGoogle Scholar
  14. K.P.0 VOLLHARDT, Angew. Chem. 96 (1984) 525Google Scholar
  15. Cobalt-vermittelte [2 + 2 + 2] Cycloadditionen: eine ausgereifte SynthesestrategieGoogle Scholar
  16. H.BÜNNEMANN, Angew. Chem. 97 (1985) 264Google Scholar
  17. Organocobaltverbindungen in der Pyridinsynthese - ein Beispiel für Struktur-Wirkungsbeziehungen in der HomogenkatalyseGoogle Scholar
  18. K.M.NICHOLAS, Acc. Chem. Res. 20 (1987) 207Google Scholar
  19. Chemistry and Synthetic Utility of Cobalt-Complexed Propargyl-CationsGoogle Scholar
  20. P.L.PAUSON, Tetrahedron 41 (1985) 5855 The KHAND-ReactionGoogle Scholar
  21. N.E.SCHORE, Chem. Rev. 88 (1988) 1081Google Scholar
  22. Transition-Metal-Mediated Cycloaddition Reactions of Alkynes in Organic SynthesisGoogle Scholar
  23. G.WILKE et al. Angew. Chem. 78 (1966) 157 Al lyl-Übergangsmetal l-SystemeGoogle Scholar
  24. S.G.DAVIES, M. L.H.GREEN, D.M.P.MINGOS, Tetrahedron 34 (1978) 3047 Nucleophilic Addition to Organotransition Metal Cations Containing Unsaturated Hydrocarbon Ligands - A Survey and InterpretationGoogle Scholar
  25. R.D.ERNST, Acc. Chem Res. 18 (1985) 56 Metal-Pentadienyl ChemistryGoogle Scholar
  26. A. J. PEARSON, Acc. Chem. Res. 13 (1980) 463 Tricarbonyl(diene)iron Complexes: Synthetically Useful PropertiesGoogle Scholar
  27. J.TSUJI, J. Organomet. Chem. 300 (1986) 281 25 Years in the Organic Chemistry of PalladiumGoogle Scholar
  28. A.EFRATY, Chem. Rev. 77 (1977) 691 Cyclobutadiene Metal ComplexesGoogle Scholar
  29. G.WILKINSON, J. Organometal. Chem. 100 (1975) 273Google Scholar
  30. The Iron Sandwich. A Recollection of the First Four MonthsGoogle Scholar
  31. P.L.PAUSON, Pure Appl. Chem. 49 (1977) 839Google Scholar
  32. Aromatic Transition-Metal Complexes - the First 25 YearsGoogle Scholar
  33. K.D.WARREN, Struct. Bonding 27 (1976) 45 Ligand Field Theory of Metal Sandwich ComplexesGoogle Scholar
  34. M.ELIAN, M.M.L.CHEN, D.M.P.MINGOS, R.HOFFMANN, Inorg. Chem. 15 (1976) 1148Google Scholar
  35. Comparative Bonding Study of Conical FragmentsGoogle Scholar
  36. K.N.RAYMOND, C.W.EIGENBROT, Jr., Acc. Chem. Res. 13 (1980) 276 Structural Criteria for the Mode of Bonding of Organoactinides and -lanthanides and Related CompoundsGoogle Scholar
  37. W.J.EVANS, Adv. Organomet. Chem. 24 (1985) 131 Organometallic Lanthanide ChemistryGoogle Scholar
  38. J.W.LAUHER, M.ELIAN, R.H.SUMMERVILLE, R.HOFFMANN, J. Am. Chem. Soc. 98 (1976) 3219Google Scholar
  39. Triple-Decker SandwichesGoogle Scholar
  40. H.WERNER, Angew.Chem. 89 (1977) 1 Neue Varietäten von Sandwich-KomplexenGoogle Scholar
  41. U.T.MÜLLER-WESTERHOFF, Angew. Chem. 98 (1986) 700 [m.m.] MetallocenophaneGoogle Scholar
  42. D.S.SHIRVER, Acc. Chem. Res., 3(1970) 231 Transition Metal BasicityGoogle Scholar
  43. H.WERNER, Angew. Chem. 95 (1983) 932Google Scholar
  44. Elektronenreiche Halbsandwich-Komplexe - Metall-Basen par excellenceGoogle Scholar
  45. R.POLI, Chem. Rev. 91 (1991) 509Google Scholar
  46. Monocyclopentadienyl halide Complexes of the d-and f-Block ElementsGoogle Scholar
  47. J.W.LAUHER, R.HOFFMANN, J.Am.Chem.Soc. 98 (1976) 1729 Structure and Chemistry of Bis(cyclopentadienyl)MLn Complexes (Bent SandwichesGoogle Scholar
  48. B.E.BURSTEN, R.J.STRITTMATTER, Angew. Chem. 103 (1991) 1085 Cyclopentadienylkomplexe der Actinoide, Bindungsverhältnisse und ElektronenstrukturGoogle Scholar
  49. K.JONAS, Pure Appl. Chem. 56 (1984) 63; Angew.Chem. 97 (1985) 292 Reactive Organometallic Compounds from MetallocenesGoogle Scholar
  50. J.SCHWARTZ, Pure Appl. Chem. 52 (1980) 733Google Scholar
  51. Organozirconium Compounds in Organic Synthesis: Cleavage Reactions of Carbon-Zirconium BondsGoogle Scholar
  52. W.E.WATTS, J. Organomet. Chem. Libr. 7 (1979) 399 Ferrocenylcarbocations and Related SpeciesGoogle Scholar
  53. H.BRUNNER, Chemie in unserer Zeit 11 (1977) 157 Die Stereochemie quadratisch pyramidaler VerbindungenGoogle Scholar
  54. K.E.DOMBROWSKI, W.BALDWIN, J.E.SHEATS, J. Organomet. Chem. 302 (1986) 281Google Scholar
  55. Metallocenes in Biochemistry, Microbiology and MedicineGoogle Scholar
  56. W.E.SILVERTHORN, Adv. Organomet. Chem. 13 (1975) 47 -Arene Transition Metal ChemistryGoogle Scholar
  57. R.G.GASTINGER, K.J.KLABUNDE, Transition Met. Chem. 4 (1979) 1 it-Arene Complexes of the Group VIII Transition MetalsGoogle Scholar
  58. M.L.H.GREEN, J. Organometal. Chem. 200 (1980) 119Google Scholar
  59. The Use of Atoms of the Group IV, V, VI Transition-Metals for the Synthesis of Zerovalent Arene CompoundsGoogle Scholar
  60. D.CLACK, K.D.WARREN, Struct. Bond. 39 (1980) 1 Metal-Ligand Bonding in 3d Sandwich ComplexesGoogle Scholar
  61. E.L.MUETTERTIES, J.R.BLEEKE, E.J.WUCHERER, T.A.ALBRIGHT, Chem. Rev. 82 (1982) 499Google Scholar
  62. Structural, Stereochemical and Electronic Features of Arene-Metal ComplexesGoogle Scholar
  63. H.SCHUMANN, Chemiker Zeitung 108 (1984) 239, 345 Cyclopentadienyleisen-aren-Kationen: Synthese, Eigenschaften und ReaktionenGoogle Scholar
  64. T.A.ALBRIGHT, P.HOFMANN, R.HOFMMANN, C.P.LILLYA, P.A.DOBOSH J. Am. Chem. Soc. 105 (1983) 3396Google Scholar
  65. Haptotropic Rearrangements of Polyene-MLn ComplexesGoogle Scholar
  66. G.DEGANELLO, Academic Press, New York (1979) Transition Metal Complexes of Cyclic PolyolefinsGoogle Scholar
  67. T.J.MARKS, Prog. Inorg. Chem. 25 (1979) 223Google Scholar
  68. Chemistry and Spectroscopy of f-Element OrganometallicsGoogle Scholar
  69. C.J.BURNS, B.E.BURSTEN, Comments Inorg. Chem. 9 (1989) 61Google Scholar
  70. Covalency in f-Element Organometallic Complexes: Theory and ExperimentGoogle Scholar
  71. K.H.PANNELL, B.L.KALSOTRA, C.PARKANYI, J. Heterocyclic. Chem. 15 (1978) 1057Google Scholar
  72. Heterocyclic ir-Complexes of the Transition MetalsGoogle Scholar
  73. F.H. MATHEY, J.FISCHER, J.H.NELSON, Struct. Bonding 55 (1983) 153 Complexing Modes of the Phosphole MoietyGoogle Scholar
  74. R.N.GRIMES, Coord. Chem. Rev. 28 (1979) 47Google Scholar
  75. Metal Sandwich Complexes of Cyclic Planar and Pyramidal Ligands Containing BoronGoogle Scholar
  76. W.SIEBERT, Adv. Organomet. Chem. 18 (1980) 301Google Scholar
  77. Boron Heterocycles as Ligands in Transitión-Metal ChemistryGoogle Scholar
  78. G.E.HERBERICH, Comprehensive Organometallic Chemistry 1 (1982) 381 Boron Ring Systems as Ligands to MetalsGoogle Scholar
  79. W.SIEBERT, Angew. Chem. 97 (1985) 924 2,3-Dihydro-1,3-diborol-Metall-Komplexe mit aktivierten CH-Bindungen, Bausteine für viellagige SandwichverbindungenGoogle Scholar
  80. G.E.HERBERICH et al. J. Organomet. Chem. 319 (1987) 9 (775-Borol)metall-KomplexeGoogle Scholar

Copyright information

© B. G. Teubner Stuttgart 1988

Authors and Affiliations

  • Christoph Elschenbroich
    • 1
  • Albrecht Salzer
    • 2
  1. 1.Universität MarburgMarburgDeutschland
  2. 2.Technische Hochschule AachenZürichSchweiz

Personalised recommendations