Skip to main content

Solving the Unit Commitment Problem in Power Generation by Primal and Dual Methods

  • Chapter
Progress in Industrial Mathematics at ECMI 96

Part of the book series: European Consortium for Mathematics in Industry ((ECMI,volume 9))

Abstract

The unit commitment problem in power plant operation planning is addressed. For a real power system comprising coal- and gas-fired thermal and pumped-storage hydro plants a large-scale mixed integer optimization model for unit commitment is developed. Then primal and dual approaches to solving the optimization problem are presented and results of test runs are reported.

This research is supported by a grant of the German Federal Ministry of Education, Science, Research and Technology (BMBF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoki, K.; Itoh, M.; Satoh, T.; Nara, K.; Kanezashi, M.: Optimal Long-Term Unit Commitment in Large Scale Systems Including Fuel Constrained Thermal and Pumped-Storage Hydro. IEEE Transactions on Power Systems 4 (1989), 1065 - 1073.

    Article  Google Scholar 

  2. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, New York, 1982.

    MATH  Google Scholar 

  3. Bertsekas, D.P.; Lauer, G.S.; Sandell, N.R.; Posbergh, T.A.: Optimal Short-Term Scheduling of Large-Scale Power Systems. IEEE Transactions on Automatic Control, AC-28(1983), 1-11.

    Google Scholar 

  4. Using the CPLEX Callable Library. CPLEX Optimization, Inc. 1994.

    Google Scholar 

  5. Feltenmark, S.; Kiwiel, K.C.; Lindberg, P.-O.: Solving Unit Commitment Problems in Power Production Planning Working Paper, 1996.

    Google Scholar 

  6. Guddat, J.; Römisch, W.; Schultz, R.: Some Applications of Mathematical Programming Techniques in Optimal Power Dispatch. Computing 49 (1992), 193 - 200.

    Article  MathSciNet  MATH  Google Scholar 

  7. Kiwiel, K.C.: Proximity Control in Bundle Methods for Convex Nondifferentiable Minimization. Mathematical Programming 46 (1990), 105 - 122.

    Article  MathSciNet  MATH  Google Scholar 

  8. Kiwiel, K.C.: User’s Guide for NOA 2.0/3.0: A Fortran Package for Convex Non-differentiable Optimization. Polish Academy of Science, System Research Institute, Warsaw, 1993/1994.

    Google Scholar 

  9. Lemaréchal, C.; Pellegrino, F.; Renaud, A.; Sagastizâbal, C.: Bundle Methods Applied to the Unit Commitment Problem. Proceedings of the 17th IFIP-Conference on System Modelling and Optimization, Prague, July 10-14, 1995. (to appear)

    Google Scholar 

  10. Möller, A.: Über die Lösung des Blockauswahlproblems mittels Lagrangescher Relaxation. Diplomarbeit, Humboldt-Universität Berlin, Institut für Mathematik, 1994.

    Google Scholar 

  11. Möller, A.; Römisch, W.: A Dual Method for the Unit Commitment Problem. Humboldt-Universität Berlin, Institut für Mathematik, Preprint Nr. 95 - 1, 1995.

    Google Scholar 

  12. Muckstadt, J.A.; Koenig, S.A.: An Application of Lagrangian Relaxation to Scheduling in Thermal Power-Generation Systems. Operations Research, 25 (1977), 387 - 403.

    Article  MATH  Google Scholar 

  13. Nowak, M.: A Fast Descent Method for the Hydro Storage Subproblem in Power Generation. Working Paper, WP-96-109, IIASA, Laxenburg, 1996.

    Google Scholar 

  14. van Roy, T.; Wolsey, L.A.: Valid Inequalities for Mixed 0-1 Programs. Discrete Applied Mathematics 14 (1986), 199 - 213.

    Article  MathSciNet  MATH  Google Scholar 

  15. Sheble, G.B.; Fand, G.N.: Unit Commitment Literature Synopsis. IEEE Transactions on Power Systems 9 (1994), 128 - 135.

    Article  Google Scholar 

  16. Takriti, S.; Birge, J.R.; Long, E.: A Stochastic Model for the Unit Commitment Problem. IEEE Transactions on Power Systems 11 (1996), 1497 - 1508.

    Article  Google Scholar 

  17. Zhuang, F.; Galiana, F.D.: Towards a More Rigorous and Practical Unit Commitment by Lagrangian Relaxation. IEEE Transactions on Power Systems 3 (1988), 763 - 773.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 B. G. Teubner Stuttgart

About this chapter

Cite this chapter

Dentcheva, D., Gollmer, R., Möller, A., Römisch, W., Schultz, R. (1997). Solving the Unit Commitment Problem in Power Generation by Primal and Dual Methods. In: Brøns, M., Bendsøe, M.P., Sørensen, M.P. (eds) Progress in Industrial Mathematics at ECMI 96. European Consortium for Mathematics in Industry, vol 9. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-96688-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-96688-9_38

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-322-96689-6

  • Online ISBN: 978-3-322-96688-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics