Skip to main content

Modelling of Bending Effects in Oil-Water Microemulsions

  • Chapter
Progress in Industrial Mathematics at ECMI 96

Part of the book series: European Consortium for Mathematics in Industry ((ECMI,volume 9))

  • 215 Accesses

Abstract

Presence of surfactants and cosurfactants in microemulsions results in a very low surface tension. For this reason, the bending effects become of particular significance. In this paper a fluid/fluid interface is considered as a two-dimensional continuum described by two independent vectors — a velocity vector v s and an intrinsic angular velocity vector w s ; in such media a couple-stress tensor appears simultaneously with a stress tensor. The theory of non-equilibrium thermodynamics is applied to the system under consideration to obtain the linear phenomenological relations. It results in eight viscosity coefficients being attributed to the interface. Two equations of Navier-Stokes type for the velocity vector and the angular velocity vector are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Healy R N/Reed R L/Stenmark D G: Multiphase microemulsion systems, Soc. Petroleum Eng. J. 16, (1976), pp. 147–155.

    Google Scholar 

  2. Hwan R/Miller C A/Fort T: Determination of microemulsion phase continuity and drop size by ultracentrifugation, J. Colloid Interface Sci. 68, 1 (1979), pp. 221–231.

    Google Scholar 

  3. Miller C A/Neogi P: Thermodynamics of microemulsions: combined effect of dispersion entropy of drops and bending energy of surfactant films, AIChE J. 26, 2 (1980), pp. 212–220.

    Article  Google Scholar 

  4. Pouchelon A/Chatenay D/Meunier J/Langevin D: Origin of low interfacial tensions in systems involving microemulsion phases, J. Colloid Interface Sci. 82, 2 (1981), pp. 418–422.

    Article  Google Scholar 

  5. De Gennes P G/Ta.upin C: Microemulsions and the flexibility of oil/water interfaces, J. Phys. Chem. 86, 13 (1982), pp. 2294–2304.

    Article  Google Scholar 

  6. Ruckenstein E: Stability, phase equilibrium, and interfacial free energy in microemulsions, Micellization, Solubilization, and Microemulsions. Vol. 2, 1977, pp. 755–778.

    Article  Google Scholar 

  7. Huh C: Equilibrium of a microemulsion that coexists with oil and brine, Soc. Petroleum Eng. J. 23, 5 (1983), pp. 829–847.

    Google Scholar 

  8. Ruckenstein E: An explanation for the unusual phase behavior of microemulsions, Chem. Phys. Lett. 98, 6 (1983), pp. 573–576.

    Article  Google Scholar 

  9. Miller C A: Interfacial bending effects and interfacial tensions in microemulsions, J. Dispersion Sci. Techn. 6, 2 (1985), pp. 159–173.

    Article  Google Scholar 

  10. Neogi P/Kim M/Friberg S E: Micromechanics of surfactant microstructures, J. Phys. Chem. 91, 3 (1987), pp. 605–611.

    Article  Google Scholar 

  11. Neogi P/Friberg S E: Curved surfaces in surfactant aggregates, J. Colloid Interface Sci. 127, 2 (1989), pp. 492–496.

    Article  Google Scholar 

  12. Gibbs J W: Scientific Papers. Vol. 1, 1906/1961.

    Google Scholar 

  13. Buff F P: Curved fluid interfaces. I. The generalized Gibbs-Kelvin equation, J. Chem. Phys. 25, 1 (1956), pp. 146–153.

    MathSciNet  Google Scholar 

  14. Murphy C L: Thermodynamics of Low Tension and Highly Curved Interfaces. Ph.D. thesis, University of Minnesota, Minneapolis, 1966.

    Google Scholar 

  15. Boussinesq J: Sur l’existence d’une viscosité superficielle, dans la mince couche de transition séparant un liquide d’un autre fluide contigu, Ann. Chim. Phys. 29 (1913), pp. 349–357.

    Google Scholar 

  16. Scriven L E: Dynamics of a fluid interface. Equation of motion for Newton surface fluid, Chem. Eng. Sci. 12, 2 (1960), pp. 98–108.

    Article  Google Scholar 

  17. Ericksen J L: Thin liquid jets, J. Ration. Mech. Anal. 1, 4 (1952), pp. 521–538.

    MathSciNet  MATH  Google Scholar 

  18. Oldroyd S G: The reology of some two-dimensional disperse systems, Proc. Cambridge Phil. Soc. 53, 2 (1957), pp. 514–524.

    MathSciNet  MATH  Google Scholar 

  19. Pais R: Vectors, Tensors and the Basic Equations of Fluid Mechanics, 1962, pp. 226–244.

    Google Scholar 

  20. Goodrich F C: The theory of capillary excess viscosities, Proc. Roy. Soc. London A374, 1758 (1981), pp. 341–370.

    Article  MathSciNet  MATH  Google Scholar 

  21. Lindsay K A/Straughan B: A thermodynamic viscous interface theory and associated stability problems, Arch. Ration. Mech. Anal. 71, 4 (1979), pp. 307–326.

    Article  MathSciNet  MATH  Google Scholar 

  22. Edwards D A/Wasan D T: Surface rheology, J. Rheol. 32 (1988), pp. 429–484.

    Article  MathSciNet  MATH  Google Scholar 

  23. Aero E A/Bulygin A N/Kuvshinskii E V: Asimmetric hydrodynamics, J. Appl. Math. Mech. 29, 2 (1965), pp. 333–344.

    Article  MATH  Google Scholar 

  24. Eringen A C: Theory of micropolar fluids, J. Math. Mech. 16 (1966), pp. 1–18.

    MathSciNet  Google Scholar 

  25. Georgescu L: A Navier-Stokes type equation for the phase interface of a liquid, Surface Sci. 15, 1 (1969), pp. 177–181.

    Article  Google Scholar 

  26. Georgescu L: Phenomenological equations for the multicomponent phase interface, Rev. Roum. Phys. 20, 8 (1975), pp. 781–790.

    MathSciNet  Google Scholar 

  27. Georgescu L: Contributii la studiul fazelor de interfata si al fenomenolor de transport neliniare pe baza termodinamicii proceselor ireversible, Stud. Cerc. Fiz. 28, 1 (1976), pp. 25–56.

    Google Scholar 

  28. Gurtin M E/Williams W O: An axiomatic foundation for continuum thermodynamics, Arch. Ration. Mech. Anal. 26, 2 (1967), pp. 83–117.

    Article  MathSciNet  MATH  Google Scholar 

  29. Fisher G M C/Leitman M J: On continuum thermodynamics with surfaces, Arch. Ration. Mech. Anal. 30, 3 (1968), pp. 225–262.

    Article  Google Scholar 

  30. Ghez R: A generalized Gibbsian surface, Surface Sci. 4, 2 (1966), pp. 125–140.

    Article  Google Scholar 

  31. Moeckel G P: Thermodynamics of an interface, Arch. Ration. Mech. Anal. 57, 3 (1975), pp. 255–280.

    Article  MathSciNet  MATH  Google Scholar 

  32. Defay R/Prigogine I/Sanfeld A: Surface thermodynamics, J. Colloid Interface Sci. 58, 3 (1977), pp. 498–510.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 B. G. Teubner Stuttgart

About this chapter

Cite this chapter

Povstenko, Y. (1997). Modelling of Bending Effects in Oil-Water Microemulsions. In: Brøns, M., Bendsøe, M.P., Sørensen, M.P. (eds) Progress in Industrial Mathematics at ECMI 96. European Consortium for Mathematics in Industry, vol 9. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-96688-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-96688-9_36

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-322-96689-6

  • Online ISBN: 978-3-322-96688-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics