Skip to main content

Hydrodynamic Design of Ship Hull Shapes by Methods of Computational Fluid Dynamics

  • Chapter

Part of the book series: European Consortium for Mathematics in Industry ((ECMI,volume 9))

Abstract

In this article the problem of ship hull shape improvement for reduced drag is described from the viewpoint of mathematical optimization. The approach concentrates on methods of shape variation and flow analysis by Computational Fluid Dynamics. This still evolving methodology will be illustrated by a few examples of hydrodynamic design.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Froude, W.: On Experiments upon the Effect Produced on the Wave-Making Resistance of Ships by Length of Parallel Middle Body, Trans. Inst. Naval Architects, vol. 18, 1877.

    Google Scholar 

  2. Froude, R. E.: On the Leading Phenomena of the Wave-Making Resistance of Ships, Trans. Inst. Naval Architects, vol. 22, 1881.

    Google Scholar 

  3. Lord Kelvin: Ship Waves, Trans. IME, London, 1887.

    Google Scholar 

  4. Michell, J. H.: The Wave Resistance of a Ship, Phil. Magazine, London, 1898.

    Google Scholar 

  5. Taylor, D. W.: Calculations for Ships’ Forms, and the Light Thrown by Model Experiments upon Resistance, Propulsion and Rolling of Ships, Trans. Intl. Eng. Congress, San Francisco, 1915.

    Google Scholar 

  6. Weinblum, G.: Systematische Entwicklung von Schiffsformen, Jahrb. STG, Berlin, 1953.

    Google Scholar 

  7. Wigley, C.: Ship Wave Resistance, Trans. NECI, vol. 47, 1931.

    Google Scholar 

  8. Havelock, T. H.: Wave Resistance Theory and its Applications to Ship Problems

    Google Scholar 

  9. Trans. SNAME, vol. 59, 1951.

    Google Scholar 

  10. Inui, T., Takahei, T., Kumano, M.: Tank Experiments on the Wave-Making Resistance Characteristics of the Bulbous Bow, Part 1, Trans JSNA, vol. 108, 1960.

    Google Scholar 

  11. Lin, W.-C., Webster, W. C., Wehausen, J. V.: Ships of Minimal Total Resistance, Proc. Intl. Seminar in Wave Resistance, Univ. of Michigan, Ann Arbor, 1963.

    Google Scholar 

  12. Hess, J. H., Smith, A. M. O.: Calculation of Non-Lifting Potential Flow about Arbitrary Three-Dimensional Bodies, Douglas Aircraft Rept. No. E.S. 40622, March 1962.

    Google Scholar 

  13. Nagamatsu, T., Sakamoto, T., Baba, E.: Study on the Minimization of Ship Viscous Resistance, Soc. Naval Arch. Japan, 1983.

    Google Scholar 

  14. Larsson, L., Patel, V. C., Dyne, G. (eds.): Ship Viscous Flow, Proc. of 1990 SSPA-CTH-IIHR Workshop, Gothenburg, FLOWTECH Intl. AB, 1991.

    Google Scholar 

  15. Ni, S. Y.: Higher Order Panel Methods for Potential Flow with Linear or Nonlinear Free Surface Boundary Condition, Dissertation, Chalmers Univ., Gothenburg, 1987.

    Google Scholar 

  16. Jensen, G.: Calculation of Wave Resistance for Practical Ship Forms, in German, Jahrb. STG, 1988.

    Google Scholar 

  17. Larsson, L., Kim, K.-J., Esping, B., Holm, D.: Hydrodynamic Optimization Using SHIPFLOW, Proc. PRADS ’82 Conf., Newcastle, 1992.

    Google Scholar 

  18. Webster, W.C.: The Flow about Arbitrary, Three-Dimensional Smooth Bodies, J. of Ship Research, Dec. 1975.

    Google Scholar 

  19. Söding, H.: Fortschritte bei der Berechnung von Potentialströmungen, STGWorkshop on Ship Hydrodynamics, Potsdam, 1995.

    Google Scholar 

  20. Dawson, C.W.: A Practical Computer Method for Solving Ship-Wave Problems, 2nd Intl. Conf. on Num. Ship Hydrodynamics, Berkeley, 1977.

    Google Scholar 

  21. Jensen, G., Söding, H., Mi, Z.X.: Rankine Source Methods for Numerical Solutions of the Steady Wave Resistance Problem, 16th Symp. Naval Hydrodynamics, Berkeley, 1986.

    Google Scholar 

  22. Anon.: Proc. Sixth Intl. Conf. on Numerical Ship Hydrodynamics, Iowa City, 1993.

    Google Scholar 

  23. Anon.: Proc. CFD Workshop Tokyo, Ship Research Institute, Tokyo, 1994.

    Google Scholar 

  24. Sotiropoulos, F., Patel, V.J.: Application of Reynolds-Stress Transport Models to Stem and Wake Flows, J. of Ship Research, vol. 39, no. 4, 1995.

    Google Scholar 

  25. Kim, S.-Y.: A Contribution to Drag Reduction of Ships by Systematic Form Variation, in German, Dissertation, TU Berlin, 1987.

    Google Scholar 

  26. Janson, C.-E., Larsson, L.: A Method for the Optimization of Ship Hulls from a Resistance Point of View, 21st Symp. on Naval Hydrodynamics, Office of Naval Research, Trondheim, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 B. G. Teubner Stuttgart

About this chapter

Cite this chapter

Nowacki, H. (1997). Hydrodynamic Design of Ship Hull Shapes by Methods of Computational Fluid Dynamics. In: Brøns, M., Bendsøe, M.P., Sørensen, M.P. (eds) Progress in Industrial Mathematics at ECMI 96. European Consortium for Mathematics in Industry, vol 9. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-96688-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-96688-9_27

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-322-96689-6

  • Online ISBN: 978-3-322-96688-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics