Advertisement

Aspektkarten — Integriert räumlich-symbolische Repräsentationsstrukturen

  • Thomas Barkowsky
  • Christian Freksa
  • Bettina Berendt
  • Stephanie Kelter
Part of the Studien zur Kognitionswissenschaft book series (SZKW)

Zusammenfassung

In der Kognitionswissenschaft wurde vielfach zwischen zwei Repräsentationsformen unterschieden, den propositionalen und den analogischen1 (vgl. Sloman, 1971, 1975; Palmer, 1978). Bei analogischen Repräsentationen wird der repräsentierte Aspekt (eine n-stellige Relation; n ≥ 1) der Objekte durch ein Merkmal dargestellt, das gewisse inhärente Constraints mit dem repräsentierten Aspekt gemeinsam hat. Bei propositionalen Repräsentationen ist dies nicht gefordert. Dies kann dazu führen, daß die entsprechenden Relationen explizit angegeben werden müssen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bagrow, L., (1951). Die Geschichte der Kartographie. Berlin: Safari-Verlag.Google Scholar
  2. Barkowsky, T. (1996). Bildhaftigkeit und ihre Operationalisierung. Diplomarbeit, Fachbereich Informatik, Universität Hamburg.Google Scholar
  3. Barkowsky, T., Röhrig, R. & Freksa, C. (1996). Operationalizing diagrammaticity. In ECAI-96 Workshop W13 Representations and processes between vision and natural language (pp. 11–16). Budapest.Google Scholar
  4. Bertin, J. (1982). Graphische Darstellungen. Berlin, New York: Walter de Gruyter.Google Scholar
  5. Burrough, P. & Frank, A. (1996) (Eds.). Geographic objects with indeterminate boundaries. London: Taylor & Francis.Google Scholar
  6. Egenhofer, M., Mark, D. (1995). Naive geography, in Frank, A. & Kuhn, W., Eds., Spatial information theory. A theoretical basis for GIS, LNCS 988. Berlin: Springer.Google Scholar
  7. Farah, M. J., Hammond, K. M., Levine, D. N. & Calvanio, R. (1988). Visual and spatial mental imagery: Dissociable systems of representation. Cognitive Psychology, 20, 439–462.CrossRefGoogle Scholar
  8. Frank, A.U., Timpf, S. (1994). Multiple representations for cartographic objects in a multi-scale tree — An intelligent graphical zoom. Comput. & Graphics, 18, 823–829.CrossRefGoogle Scholar
  9. Freksa, C. & Barkowsky, T. (1996). On the relation between spatial concepts and geographic objects. In Burrough & Frank, 1996.Google Scholar
  10. Funt, B. (1980). Problem-Solving with Diagrammatic Representations. Artificial Intelligence 13, 201–230.CrossRefGoogle Scholar
  11. Glasgow, J. & Papadias, D. (1992). Computational imagery, Cognitive Science, 16, 355–394.Google Scholar
  12. Habel, C. (1990). Propositional and depictorial representations of spatial knowledge: the case of path concepts. In R. Studer (Ed.), Natural Language and Logic. Lecture Notes in Artificial Intelligence (pp. 94–117). Berlin: Springer.Google Scholar
  13. Habel, C., Pribbenow, S., Simmons, G. (1995). Partonomies and depictions: A hybrid approach. In: Glasgow, J., Narayanan, N.H., Chandrasekaran, B. (Eds.). Diagrammatic reasoning: Cognitive and computational perspectives. Menlo Park, California: AAAI Press/The MIT Press.Google Scholar
  14. Habel, C. (1996). Räumliche Repräsentationsformate für die Sprachproduktion — eine Fallstudie. In Meyer-Klabunde, R., v. Stutterheim, C. (Eds.). Proceedings of a Workshop on Conceptual and Semantic Knowledge in Language Production. Heidelberg, Mannheim: Arbeiten aus dem Sonderforschungsbereich 245 “Sprache und Situation”. Bericht Nr. 92, 57–86.Google Scholar
  15. Haugeland, J. (1985). Artificial Intelligence — The very idea. Cambridge, Mass.: MIT-Press.Google Scholar
  16. Head, C.G. (1991). Mapping as language or semiotic system: review and comment, In D.M. Mark & A.U. Frank (Eds.), Cognitive and linguistic aspects of geographic space (pp. 237–262). Kluwer Academic Publishers.Google Scholar
  17. Höhne, K.H., Pommert, A., Riemer, M., Schiemann, T., Schubert, R., Tiede, U. & Lier-se, W. (1995). Dreidimensionale medizinische Atlanten, uni hh Forschung, XXX, 43–48.Google Scholar
  18. Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain Sciences, 17, 187–245.CrossRefGoogle Scholar
  19. Jungert, E. (1988). Extended symbolic projections as a knowledge structure for spatial reasoning. In J. Kittler (Ed.), Pattern recognition. Cambridge, UK.Google Scholar
  20. Kanizsa, G. (1979). Organization in vision. New York: Praeger.Google Scholar
  21. Koedinger, K. (1992). Emergent properties and structural constraints: advantages of diagrammatic representations for reasoning and learning. In: Narayanan, N. H. (ed.) (1992). Reasoning with diagrammatic representations, Technical Report SS-92–02, Menlo Park, CA: AAAI Press.Google Scholar
  22. Kosslyn, S.M., Flynn, R.A., Amsterdam, J.B., Wang, G. (1990). Components of high-level vision: A cognitive neuroscience analysis and accounts of neurological syndromes. Cognition, 34, 203–277.CrossRefGoogle Scholar
  23. Kosslyn, S.M. (1987). Seeing and imagining in the cerebral hemispheres: A computational approach. Psychological Review, 94, 148–175.CrossRefGoogle Scholar
  24. Landau, B., Jackendoff, R. (1993). “What” and “Where” in spatial language and spatial cognition. Behavioral and Brain Sciences, 16, 217–265.CrossRefGoogle Scholar
  25. Larkin, J. & Simon, H. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 65–99.CrossRefGoogle Scholar
  26. Livingstone, M. & Hubel, D. (1988). Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science, 240, 740–749.CrossRefGoogle Scholar
  27. Meyer-Fujara, J., Schlüpmann, M. (1995). Space-related aspects of a representation system for anatomical knowledge. In L. Dreschler-Fischer & S. Pribbenow (Eds.), KI-95 Activities: Workshops, posters, demos. Gesellschaft für Informatik, Bonn.Google Scholar
  28. Neumann, H., Stiehl, S. (1993). Modelle der frühen visuellen Informationsverarbeitung. In Görz, G., Hg. Einführung in die künstliche Intelligenz. Bonn, Paris, Reading, Mass. u.a.: Addison-Wesley.Google Scholar
  29. Palmer, S.E. (1978). Fundamental aspects of cognitive representation. In E. Rosch & B.B. Lloyd (Eds.), Cognition and categorization (pp. 259–303). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  30. Pratt, I. (1993). Map semantics. In Frank, A. & Campari, I., Eds., Spatial information theory. A theoretical basis for GIS, LNCS 716. Berlin: Springer.Google Scholar
  31. Rock, I. & Palmer, S.E. (1990). The legacy of gestalt psychology, Scientific American, 263, 48–61.CrossRefGoogle Scholar
  32. Sloman, A. (1971). Interactions between philosophy and artificial intelligence: the role of intuition and non-logical reasoning in intelligence. Artificial Intelligence 2, 209–225.CrossRefGoogle Scholar
  33. Sloman, A. (1975). Afterthoughts on analogical representations. Proc. Theoretical Issues in Natural Language Processing (pp. 164–168). Cambridge, MA.Google Scholar
  34. Sloman, A. (1985). Why we need many knowledge representation formalisms. In Bramer, M. (Ed.), Research and development in expert systems. Cambridge University Press.Google Scholar
  35. Strube, G., Becker, B., Freksa, C., Hahn, U., Opwis, K., Palm, G., Hg. (1996). Wörterbuch der Kognitionswissenschaft. Stuttgart: Klett-Cotta.Google Scholar
  36. Treisman, A. & Gormican, S. (1988). Feature analysis in early vision: Evidence from search asymmetries. Psychological Review, 95, 15–48.CrossRefGoogle Scholar
  37. Tversky, B. (1992). Distortions in cognitive maps. Geoforum, 23, 131–138.CrossRefGoogle Scholar
  38. Wang, D. (1995). Studies on the formal semantics of pictures. ILLC Dissertation Series 1995–4, Institute for Logic, Language and Computation, Universiteit van Amsterdam.Google Scholar

Copyright information

© Deutscher Universitäts-Verlag GmbH, Wiesbaden 1997

Authors and Affiliations

  • Thomas Barkowsky
  • Christian Freksa
  • Bettina Berendt
  • Stephanie Kelter

There are no affiliations available

Personalised recommendations