Advertisement

Glasfasern und Halbleiter für die optische Nachrichtentechnik

  • Wolfgang Harth
  • Helmut Grothe
Part of the Teubner Studienbücher Physik book series (TSBP)

Zusammenfassung

Glasfasern für die optische Nachrichtenübertragung bestehen aus einem zylindrischen Faserkern und einer konzentrischen Mantelschicht, deren Brechungsindex \( \bar n_2 \) niedriger als der des Kernmaterials \( \bar n_1 \) ist.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. /1/.
    Li, T.: Structures, parameters, and transmission properties of optical fibers. Proc. IEEE 68 (1980) 1175–1180CrossRefGoogle Scholar
  2. /2/.
    Gambling, W. A.; Payne, D. N.: Optical fibre systems. Phil. Trans. R. Soc. Lond. A. 289 (1978) 135–150CrossRefGoogle Scholar
  3. /3/.
    Suematsu, Y.: Long-wavelength optical fiber communication. Proc. IEEE 71 (1983) 692–721CrossRefGoogle Scholar
  4. /4/.
    Cohen, L. G.; Mammel, W. L.; Jang, S. J.; Pearson, A. D.: High-bandwidth single-mode fibers. 9th European Conference on Optical Communication, Genf, Schweiz, 23.-26. Okt. 1983, X/1Google Scholar
  5. /5/.
    Bachmann, P.; Leers, D.; Lennartz, M.; Wehr, H.: Preparation of single-mode fibres by the low pressure PCVD process. 9th European Conference on Optical Communication, Genf, Schweiz, 23.-26. Okt. 1983, II-A/1Google Scholar
  6. /6/.
    Horiguchi, M.; Osanai, H.: Spectral losses of low-OH-content optical fibres. Electron. Lett. 11 (1976) 310–311CrossRefGoogle Scholar
  7. /7/.
    Stillman, G. E.; Cook, L. W.; Bulman, G. E.; Tabatabaie, N.; Chin, R.; Dapkus, P. D.: Long-wavelength (1.3 to 1.6 pm) detectors for fiber-optical communications. IEEE Trans. on Electron Dev. ED-29 (1982) 1355–1371Google Scholar
  8. /8/.
    Casey, H. C., Jr.; Panish, M. B.: Heterostructure lasers - Part A: Fundamental principles - Part B: Materials and operating characteristics. New York: Academic Press 1978Google Scholar
  9. /9/.
    Alferov, Zh. I.: 100% internal quantum efficiency of radiative recombination in three-layer AlAs-GaAs heterojunction lightemitting diodes. Soy. Phys. Semicond. 9 (1975) 305–311Google Scholar
  10. /10/.
    Nahory, R. E.; Pollack, M. A.; Johnston. W.D., Jr.; Barns, R.L.: Band gap versus composition and demonstration of Vegard’s law for InGaAsP lattice matched to InP. Appl. Phys. Lett. 33 (1978) 659–661CrossRefGoogle Scholar
  11. /11/.
    Buus, J.; Adams, M. J.: Phase and group indices for double heterostructure lasers. Sol. State and Electron Dey. 3 (1979) 189–195Google Scholar
  12. /12/.
    Nahory, R. E.; Pollack, M. A.: Treshold dependence on active-layer thickness in InGaAsP/InP d.h. lasers. Electron. Lett. 14 (1978) 727–729CrossRefGoogle Scholar
  13. /13/.
    Dolginov, L. M.; Druzhinina, L. V.; Eliseev, P. G.; Milvidskii, M. G.; Sverdlov, B. N.: New uncooled injection heterolaser emitting in the 1.5–1.8 pm range. Soy. J. Quant. Electron. 6 (1976) 257–259CrossRefGoogle Scholar

Copyright information

© B. G. Teubner Stuttgart 1984

Authors and Affiliations

  • Wolfgang Harth
    • 1
  • Helmut Grothe
    • 1
  1. 1.Technischen Universität MünchenMünchenDeutschland

Personalised recommendations