Skip to main content

Katalyse durch Hämoproteine: Elektronenübertragung, Sauerstoffaktivierung und Metabolismus anorganischer Zwischenprodukte

  • Chapter
Bioanorganishe Chemie

Part of the book series: Teubner Studienbücher Chemie ((TSBC))

Zusammenfassung

Eisen-Porphyrin-Komplexe besitzen neben der Fähigkeit zum stöchiometrischen Disauerstoff-Transport vielfältige katalytische Funktionen im biochemischen Geschehen. Häm-enthaltende Enzyme sind an Elektronentransport und -akkumulation, an der kontrollierten Umsetzung sauerstoffhaltiger Zwischenprodukte wie etwa O2 2−, NO2 oder SO3 2− sowie zusammen mit anderen prosthetischen Gruppen an komplexen Redoxprozessen beteiligt (vgl. die Cytochrom c-Oxidase, Kap. 10.4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • G. Von Jagow, W.D. Engel, Angew. Chem. 92 (1980) 684: Struktur und Funktion des energieumwandelnden Systems der Mitochondrien

    Google Scholar 

  • P. Mitchell, Science 206 (1979) 1148: Keilin’s respiratory chain concept and its chemiosmotic consequences

    Google Scholar 

  • C. Greenwood in (o), Part 1,S. 43: Cytochromes c and cytochrome c containing enzymes

    Google Scholar 

  • G.R. Moore, G.W. Pettigrew: Cytochromes c, Springer-Verlag, Berlin, 1990

    Book  Google Scholar 

  • S.E.J. Rigby, G.R. Moore, J.C. Gra, P.M.A. Gadsby, S.J. George, A.J. Thomson, Biochem. J. 256 (1988) 571: N.m.r., e.p.r. and magnetic-c.d. studies of cytochrome f

    Google Scholar 

  • M.R. Cheesman, A.J. Thomson, C. Greenwood, G.R. Moore, F. Kadir, Nature (London) 346 (1990) 771: Bis-methionine axial ligation of haem in bacterioferritin from Pseudomonas aeruginosa

    Google Scholar 

  • F.R. Salemme, Annu. Rev. Biochem. 46 (1977) 299: Structure and function of cytochromes c

    Google Scholar 

  • R.J.P. Williams in M.K. Johnson et al. (Hrsg.): Electron Transfer in Biology,Adv. Chem. Ser. 226 (1990), S. 3: Overview of biological electron transfer

    Google Scholar 

  • H.B. Gray, B.G. Malmstrom, Biochemistry 28 (1989) 7499: Long-range electron transfer in multisite metalloproteins

    Google Scholar 

  • J.R. Miller, Nouv. J. Chim. 11 (1987) 83: Controlling charge separation through effects of energy, distance and molecular structure on electron transfer rates

    Google Scholar 

  • R.C. Prince, Trends Biochem. Sci. 13 (1988) 286: Tyrosine radicals

    Google Scholar 

  • R.C. Prince, G.N. George, Trends Biochem. Sci. 15 (1990) 170: Tryptophan radicals

    Google Scholar 

  • J.Deisenhofer, H. Michel, Angew. Chem. 101 (1989) 872: Das photosynthetische Reaktionszentrum des Purpurbakteriums Rhodopseudomonas viridis (Nobel-Vortrag)

    Google Scholar 

  • S.G. Sligar, K.D. Egeberg, J.T. Sage, D. Morikis, P.M. Champion, J. Am. Chem. Soc. 109 (1987) 7896: Alteration of heme axial ligands by site-directed mutagenisis: A cytochrome becomes a catalytic demethylase

    Google Scholar 

  • J.T. Groves in (h), S. 928: Key elements of the chemistry of cytochrome P-450

    Google Scholar 

  • R.I. Murray, M.T. Fisher, P.G. Debrunner, S.G. Sligar in (o), Part 1, S. 157: Structure and chemistry of cytochrome P-450

    Google Scholar 

  • P.R. Orriz De Montellano (Hrsg.): Cytochrome P-450: Structure, Mechanism, and Biochemistry, Plenum Press, New York, 1986

    Google Scholar 

  • P.R. Ortiz De Montellano, Acc. Chem. Res. 20 (1987) 289: Control of the catalytic activity of prosthetic heure by the structure of hemoproteins

    Google Scholar 

  • W.B. Jakoby, D. M. Ziegler, J. Biol. Chem. 265 (1990) 20715: The enzymes of detoxification

    Google Scholar 

  • E. Mutschler: Arzneimittelwirkungen, Lehrbuch der Pharmakologie und Toxikologie, 6.Aufl., WVG, Stuttgart, 1991

    Google Scholar 

  • D. Mansuy, P. Battkcni, J.P. Barnoni, Eur. J. Biochem. 184 (1989) 267: Chemical model systems for drug-metabolizing cytochrome-P-450-dependent monooxygenases

    Google Scholar 

  • W.D. Woggon, Nachr. Chem. Tech. Lab. 36 (1988) 890: Modelle für Cytochrom P450

    Google Scholar 

  • T.L. Poulos, B.C. Finzel, I.C. Gunsalus, G.C. Wagner, J. Kraut, J. Biol. Chem. 260 (1985) 16122: The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450

    Google Scholar 

  • R.Raag, T.L. PouLos, Biochemistry 28 (1989) 917: The structural basis for substrate-induced changes in redox potential and spin equilibrium in cytochrome P-450CAM

    Google Scholar 

  • T.L. Poulos in (c), Vol. 7,1988, S. 1–36: Herne enzyme crystal structures

    Google Scholar 

  • D. Mandon, R. Welss, M. Franke, E. Bill, A.X. Trautwein, Angew. Chem. 101 (1989) 1747: Ein Oxoeisenporphyrinat mit höherwertigem Eisen: Bildung durch lösungsmittelabhängige Protonierung eines Peroxoeisen(lll)-porphyrinat-Derivats

    Google Scholar 

  • J.T. Groves, Y. Watanabe, J. Am. Chem. Soc. 110 (1988) 8443: Reactive iron por-phyrin derivatives related to the catalytic cycles of cytochrome P-450 and peroxidase

    Google Scholar 

  • D.T. Sawyer, Comments lnorg. Chem. 6 (1987) 103: The nature of the bonding and valency for oxygen in its metal compounds

    Google Scholar 

  • P.M. Champion, J. Am. Chem. Soc. 111 (1989) 3433: Elementary electronic excitations and the mechanism of cytochrome P450

    Google Scholar 

  • H. Sugimoro, H.C. Tung, D.T. Sawyer, J. Am. Chem. Soc. 110 (1988) 2465: Formation, characterization, and reactivity of the oxene adduct of [tetrakis(2,6dichlorophenyl)porphinatojiron(lll) perchlorate in acetonitrile. Model for the reactive intermediate of cytochrome P-450

    Google Scholar 

  • W.A. Herrmann, J. Organomet. Chem. 300 (1986) 111: Zufallsentdeckung am Beispiel Rhenium: Oxo-Komplexe in hohen und niedrigen Oxidationsstufen

    Google Scholar 

  • S. Hashimoto, R. Nakajima, I. Yamazaki, T. Kotani, S. Ohtaki, T. Kitagawa, FEBS Lett. 248 (205) 1989: Resonance RAMAN characterization of hog thyroid peroxidase

    Google Scholar 

  • B.C. Finzel, T.L. PouLos, J. Kraut, J. Biol. Chem. 259 (1984) 13027: Crystal structure of yeast cytochrome c peroxidase refined at 1.7 A resolution

    Google Scholar 

  • JH.E. Schoemaker, Red. Tray. Chim. Pays-Bas 109 (1990) 255: On the chemistry of lignin biodegradation

    Google Scholar 

  • H. Dawson, Science 240 (1988) 433: Probing structure-function relations in hemecontaining oxygenases and peroxidases

    Google Scholar 

  • I. Yamazaki, in (q), S. 224: Catalase

    Google Scholar 

  • H.B. Dunford, J.S. Stillman, Coord. Chem. Rev. 19 (1976) 187: On the function and mechanism of action of peroxidases

    Google Scholar 

  • K. Wieghardt, Angew. Chem. 101 (1989) 1179: Die aktiven Zentren in manganhaltigen Metalloproteinen and anorganische Metallkomplexe

    Google Scholar 

  • W. Kaim, Nachr. Chem. Tech. Lab. 32 (1984) 436: Einelektronenübertragung: Abschied von Elektronenpaar-Mechanismen?

    Google Scholar 

  • M.G. Peter, Angew. Chem. 101 (1989) 572: Chemische Modifikation von Biopolymeren durch Chinone and Chinonmethide

    Google Scholar 

  • K.E. Hammel, P.J. Tardone, Biochemistry 27 (1988) 6563: The oxidative4-dechlorina-tion of polychlorinated phenols is catalyzed by extracellular fungal lignin peroxidases

    Google Scholar 

  • A.R. Butler, Chem. Br. (1990) 419: NO — its role in the control of blood pressure

    Google Scholar 

  • C.K. Chang, R. Timkovich, W. Wu, Biochemistry 25 (1986) 8447: Evidence that heme dl is a 1,3-porphyrindione

    Google Scholar 

  • R.C. Prince, A.B. Hooper, Biochemistry 26 (1987) 970: Resolution of the hemes of hydroxylamine oxidoreductase by redox potentiometry and electron spin resonance spectroscopy

    Google Scholar 

  • D.E. Mcree, D.C. Richardson, J.S. Richardson, L.M. Siegel, J. Biol. Chem. 261 (1986) 10277: The heme and Fe4S4 cluster in the crystallographic structure of Escherichia coli sulfite reductase

    Google Scholar 

  • A. Pierik, W.R. Hagen, Eur. J. Biochem. 195 (1991) 505: S = 9/2 EPR signals are evidence against coupling between the siroheme and the Fe/S cluster prosthetic groups in Desulfovibrio vulgaris (HILDENBOROUGH) dissimilatory sulfite reductase

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 B. G. Teubner Stuttgart

About this chapter

Cite this chapter

Kaim, W., Schwederski, B. (1991). Katalyse durch Hämoproteine: Elektronenübertragung, Sauerstoffaktivierung und Metabolismus anorganischer Zwischenprodukte. In: Bioanorganishe Chemie. Teubner Studienbücher Chemie. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-94722-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-94722-2_6

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-519-03505-3

  • Online ISBN: 978-3-322-94722-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics