Skip to main content

Metalle im Zentrum der Photosynthese: Magnesium und Mangan

  • Chapter
Bioanorganishe Chemie

Part of the book series: Teubner Studienbücher Chemie ((TSBC))

  • 95 Accesses

Zusammenfassung

Sowohl das Hauptgruppenelement Magnesium als auch das Übergangsmetall Mangan (Wieghardt) besitzen neben ihrer Funktion im Bereich der Photosynthese große Bedeutung als Zentren von hydrolytischen Enzymen, insbesondere von Phosphatasen (Kap. 14.1). Mangan spielt darüber hinaus eine Rolle als Redoxzentrum für bestimmte Formen von Ribonukleotid-Reduktase (vgl. Kap. 7.6.1), Katalase (Kap. 6.3) und Superoxid-Dismutase (Kap. 10.5). Obwohl am photosynthetischen Gesamtprozeß auch noch Eisen- und Kupfer-Zentren für den Elektronentransfer innerhalb der Membranproteine wesentlich beteiligt sind, beschränkt sich dieses, der für Lebewesen wohl wichtigsten chemischen Reaktion gewidmete Kapitel, auf zwei elementare Teilbereiche der Photosynthese: die Aufnahme von Licht und die damit bewerkstelligte Ladungstrennung durch magnesiumhaltige Chlorophylle sowie die Mangan-katalysierte Oxidation von Wasser zu Sauerstoff bei Cyanobakterien, Algen und den höheren Pflanzen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • K. Wieghardt, Angew. Chem. 101 (1989) 1179: Die aktiven Zentren in manganhaltigen Metalloproteinen und anorganische Metallkomplexe

    Google Scholar 

  • J.Deisenhofer, H. Michel, Angew. Chem. 101 (1989) 872: Das photosynthetische Reaktionszentrum des Purpurbakteriums Rhodopseudomonas viridis (Nobel-Vortrag)

    Google Scholar 

  • G.S. Beddard, Eur. Spectrosc. News 65 (1986) 10: Some applications of picosecond spectroscopy

    Google Scholar 

  • W. Holzapfel, U. Finkele, W. Kaiser, D. Oesterhelt, H. Scheer, H.U. Stilz, W. Zinth, Chem. Phys. Lett. 160 (1989) 1: Observation of a bacteriochlorophyll anion radical during the primary charge separation in a reaction center

    Google Scholar 

  • W. Lubitz, G.T. Babcock, Trends Biochem. Sci. 12 (1987) 96: ENDOR spectroscopy H.T. Wn-r, Nouv. J. Chim. 11 (1987) 91: Examples for the cooperation of photons, excitons, electrons, electric fields and protons in the photosynthetic membrane

    Google Scholar 

  • W. Mantele, Biol. Unserer Zeit 20 (1990) 85: Photosynthese

    Google Scholar 

  • J.R. Norris, M. Schiffer, Chem. Eng. News, 30. Juli (1990) 22: Photosynthetic reaction centers in bacteria

    Google Scholar 

  • G.Drews, J. Oelze, Biol. Unserer Zeit 16 (1986) 113: Photosynthese bei phototrophen Bakterien

    Google Scholar 

  • J.M. Anderson, B. Andersson, Trends Biochem. Sci. 13 (1987) 351: The dynamic photosynthetic membrane and regulation of solar energy conversion

    Google Scholar 

  • J.D. Coyle, R.R. Hill, D.R. Roberts (Hrsg.): Light, Chemical Change and Life, The Open University Press, Milton Keynes (England), 1982

    Google Scholar 

  • R. Huber, Angew. Chem. 101 (1989) 849: Eine strukturelle Grundlage für die Übertragung von Lichtenergie und Elektronen in der Biologie (Nobel-Vortrag)

    Google Scholar 

  • H.Zuber, Trends Biochem. Sci. 11 (1986) 414: Structure of light-harvesting antenna complexes of photosynthetic bacteria, cyanobacteria and red algae

    Google Scholar 

  • C.N. Hunter, R. Van Grondelle, J.D. Olsen, Trends Biochem. Sci. 14 (1989) 72: Photosynthetic antenna proteins: 100 ps before photochemistry starts

    Google Scholar 

  • H.C. Chow, R. Serlin, C.E. Strouse, J. Am. Chem. Soc. 97 (1975) 7230: The crystal and molecular structure and absolute configuration of ethyl chlorophyllide a di-hydrate

    Google Scholar 

  • J. P. Allen, G. Feher, T.O. Yeates, H. Komiya, D.C. Rees, Proc. Natl. Acad. Sci. USA 84 (1987) 5730: Structure of the reaction center from Rhodobacter sphaeroides R26: The cofactors

    Google Scholar 

  • D.B. Knaff, Trends Biochem. Sci. 13 (1988) 460: The photosystem I reaction centre

    Google Scholar 

  • W.H. Armstrong in (u), S. 1: Metalloprotein crystallography: Survey of recent results and relationships to model studies

    Google Scholar 

  • H. Michel, J. Mol. Biol. 158 (1982) 567: Three-dimensional crystals of a membrane protein complex. The photosynthetic reaction center from Rhodopseudomonas viridis

    Google Scholar 

  • R.A. Marcus, N. Sutin, Biochim. Biophys. Acta 811 (1985) 265: Electron transfers in chemistry and biology

    Google Scholar 

  • G.D. Lawrence, D.T. Sawyer, Coord. Chem. Rev. 27 (1978) 173: The chemistry of biological manganese

    Google Scholar 

  • G.W.Brudvig, R.H. Crabtree, Prog. Inorg. Chem. 37 (1989) 99: Bioinorganic chemistry of manganese related to photosynthetic oxygen evolution

    Google Scholar 

  • G. Christou, Acc. Chem. Res. 22 (1989) 328: Manganese carboxylate chemistry and its biological relevance

    Google Scholar 

  • G. Renger, Angew. Chem. 99 (1987) 660: Biologische Sonnenenergienutzung durch photosynthetische Wasserspaltung

    Google Scholar 

  • G. Renger in (j), S. 105: On the mechanism of photosynthetic water oxidation to dioxygen

    Google Scholar 

  • A.W. Rutherford, Trends Biochem. Sci. 14 (1989) 227: Photosystem Il, the water-splitting enzyme

    Google Scholar 

  • Govindjee, W.J. Coleman, Sci. Am. 262,Februar (1990) 42: How plants make oxygen

    Google Scholar 

  • G.T. Babcock, B.A. Barry, R.J. Debus, C.W. Hoganson, M. Atamaian, L. Mcintosh, I. Sithole, C.F. Yocum, Biochemistry 28 (1989) 9557: Water oxidation in photosystem 11: From radical chemistry to multielectron chemistry

    Google Scholar 

  • R.E. Blankenship, R.C. Prince, Trends Biochem. Sci. 10 (1985) 382: Excited-state redox potentials and the Z scheme of photosynthesis

    Google Scholar 

  • J.Barber, Trends Biochem. Sci. 12 (1987) 321: Photosynthetic reaction centres: A common link

    Google Scholar 

  • P. Laggner, R. Mandl, A. Schuster, M. Zechner, D. Grill, Angew. Chem. 100 (1988) 1790: Rasche Bestimmung des Manganmangels in Koniferennadeln durch ESRSpektroskopie

    Google Scholar 

  • S.P. Cramer, K.O. Hodgson, Prog. lnorg. Chem. 25 (1979) 1: X-ray absorption spectroscopy

    Google Scholar 

  • A.J. Thomson, Nachr. Chem. Tech. Lab. 31 (1983) 190: Grenzen der EXAFS-Spektroskopie

    Google Scholar 

  • J.E. Penner-Hahn in (u), S. 28: X-ray absorption spectroscopy for characterizing metal clusters in proteins: Possibilities and limitations

    Google Scholar 

  • K. Sauer, R.D. Guiles, A.E. Mcdermott, J.L. Cole, V.K. Yachandra, J.L. Zimmermann, M.P. Klein, S.L. Dexheimer, R.D. Brit in (j), S. 87: Spectroscopic studies of manganese involvement in photosynthetic oxygen evolution

    Google Scholar 

  • A. Boussac, J.-L. Zimmermann, A. W. Rutherford, J. Lavergne, Nature (London) 347 (1990) 303: Histidine oxidation in the oxygen-evolving photosystem-Il enzyme

    Google Scholar 

  • R.L. Carlin: Magnetochemistry, Springer-Verlag, Berlin, 1986

    Book  Google Scholar 

  • G. Blondin, J.-J. Girerd, Chem. Rev. 90 (1990) 1359: Interplay of electron exchange and electron transfer in metal polynuclear complexes in proteins or chemical models

    Google Scholar 

  • M. Sivaraja, J.S. Philo, J. Lary, G.C. Dismukes, J. Am. Chem. Soc. 111 (1989) 3221: Photosynthetic oxygen evolution: Changes in magnetism of the water-oxidizing enzyme

    Google Scholar 

  • U. Bossek, T. Weyhermüller, K. Wieghardt, B. Nuber, J. Weiss, J. Am. Chem. Soc. 112 (1990) 6387: [L 2 Mn2 (p.-0 2 1)(C10 4 ) 2 : The first binuclear (µ-peroxo)dimanganese(IV) complex (L = 1,4,7-trimethyl-1,4,7-triazacyclononane). A model for the S 4 -003E S o transformation in the oxygen-evolving corrigez in photosynthesis

    Google Scholar 

  • K. Wieghardt, U. Bossek, J. Bonvoisin, P. Beauvillain, J.J. Girerd, B. Nuber, J. Weiss, J. Heinze, Angew. Chem. 98 (1986) 1026: Zweikernige Mangan(11,111,1V)-Modellkomplexe für das aktive Zentrum des Metalloproteins Photosystem II

    Google Scholar 

  • R.J.P. Williams in (j), S. 5: The where, the when, the how and the why of biological oxygen reactions

    Google Scholar 

  • H.H. Thorp, J.E. Sarneski, G.W. Brudvig, R.H. Crabtree, J. Am. Chem. Soc. 111 (1989) 9249: Proton-coupled electron transfer in ((bpy) 2 Mn(0) 2 Mn(bpy) 2 ] 3 +

    Google Scholar 

  • T.J. Meyer, Acc. Chem. Res. 22 (1989) 163: Chemical approaches to artificial photosynthesis

    Google Scholar 

  • J.A. Gilbert, D.S. Eggleston, W.R.Murphy, D.A. Geselowitz, S.W. Gersten, D.J. Hodgson, T.J. Meyer, J. Am. Chem. Soc. 107 (1985) 3855: Structure and redox properties of the water-oxidation catalyst [(bpy)2(OH2)RuORu(OH2)(bpy)2J4+

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 B. G. Teubner Stuttgart

About this chapter

Cite this chapter

Kaim, W., Schwederski, B. (1991). Metalle im Zentrum der Photosynthese: Magnesium und Mangan. In: Bioanorganishe Chemie. Teubner Studienbücher Chemie. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-94722-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-94722-2_4

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-519-03505-3

  • Online ISBN: 978-3-322-94722-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics