Skip to main content
  • 311 Accesses

Zusammenfassung

Die Mehrphasenströmung ist die am häufigsten auftretende Strömungsform in Natur und Technik. Dabei ist der Begriff Phase im thermodynamischen Sinne als Aggregatzustand fest, flüssig und gasförmig zu verstehen, die in ein- oder mehrkomponentigen Stoffsystemen simultan auftreten können. Die mit Regentropfen und Hagelkörnern driftenden Gewitterwolken, der schäumende Gebirgsbach, die abgehende Schneestaub-Lawine oder die Vulkanasche-Wolke sind eindrucksvolle Beispiele für Mehr-Phasenströmungen in der Natur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • A. J. Acosta, B. R. Parkin. Cavitation Inception–a Selective Review. J. Ship Res., 19, 193–205, 1975.

    Google Scholar 

  • W. Archer. Experimental Determination of Loss of Heat due to Sudden Enlargement in Circular Pipes. Trans. Am. Soc. Civil Eng., 76, 999–1026, 1913.

    Google Scholar 

  • E. A. Arndt. Cavitation in Fluid Machinery and Hydraulic Structures. Ann. Rev. Fluid Mech., 13, 273–328, 1981.

    Article  Google Scholar 

  • R. E. A. Arndt, V. H. Arakeri. Some Observations of Tip-Vortex Cavitation. JFM, 229, 269–289, 1991.

    Article  Google Scholar 

  • B. J. Azzopardi, E. Hervieu. Phase Separation in T-Junctions. Multiphase Science and Technology, 8, 645–713, 1994.

    Google Scholar 

  • J. P. Best. The Formation of Torroidal Bubbles upon the Collapse of Transient Cavities. JFM, 251, 79–107, 1993.

    Article  MATH  Google Scholar 

  • J. R. Blake, B. B. Taib, G. Doherty. Transient Cavities Near Boundaries, Pt I. Rigid Boundaries. JFM, 170, 479–497, 1986.

    Article  MATH  Google Scholar 

  • L. Bolle, J. C. Moureau. Spray Coiling of Hot Surfaces. Multiphase Science and Technology, 1, 1–97, 1982.

    Google Scholar 

  • C. E. Brennen. Cavitation and Bubble Dynamics. Oxford University Press, Oxford, 1995.

    Google Scholar 

  • S. Chandrasekhar. Hydrodynamic and Hydromagnetic Stability. Oxford Univ. Press, 1968.

    Google Scholar 

  • Y. Chen, S. D. Heister. A Numerical Treatment for Attached Cavitation. Journal of Fluids Eng., 116, 613–618, 1994.

    Article  Google Scholar 

  • B. Chexal, J. Horowitz, G. Lellouche. An Assessment of Eight Void Fraction Models for Vertical Flows. 5949, NSAC, Electric Power Research Institute, Palo Alto, Ca., 1986.

    Google Scholar 

  • D. Chisholm. Pressure Losses in Bends and T’s during Steam-Water Flow. Report 318, N. E. L., 1967.

    Google Scholar 

  • D. Chisholm. A Theoretical Basis for the Lockhart-Martinelli Correlation for Two-Phase Flow. Int. J. Heat Mass Transfer, 10, 1767–1678, 1967.

    Article  Google Scholar 

  • A. Cicchitti, C. Lombardi, M. Silvestri, G. Soldaini, R. Zavattarelli. Two-Phase Cooling Experiments–Pressure Drop, Heat Transfer and Burnout Measurements. Energia Nucleare, 7, 6, 407–425, 1960.

    Google Scholar 

  • R. Cliff, J. R. Grace, M. E. Weber. Bubbles, Drops and Particles. Academic Press, New York, 1978.

    Google Scholar 

  • J. G. Collier, J. R. Thome. Convective Boiling and Heat Transfer. Clarendon Press, Oxford, 1994.

    Google Scholar 

  • R. Collins. The Effect of a Containing Cylindrical Boundary on the Velocity of a Large Gas Bubble in a Liquid. JFM, 28, 1, 97–112, 1967.

    Article  Google Scholar 

  • C. Crowe, M. Sommerfeld. Y. Tsuji. Multiphase Flows with Droplets and Particles. CRS Press, Boca Raton, Boston, New York, London, 1998.

    Google Scholar 

  • J. Delhaye, M. Giot, M. Riethmiiller. Thermodynamics of Two-Phase Systems for Industrial Design and Nuclear Engineering. Hemisphere Publishing, New York, 1981.

    Google Scholar 

  • A. A. Dukler. Pressure Drop and Hold-Up in Two-Phase Flow. AIChE, 10, 1, 38–51, 1964.

    Article  Google Scholar 

  • H. K. Fauske. Contribution to the Theory of Two-Phase, One-Component Critical Flow. Technical Report ANL-6633, Argonne National Laboratory. 1963.

    Google Scholar 

  • J. P. Franc, J. M. Michel. Attached Cavitation and the Boundary Layer Experimental Investigation and Numerical Treatment. JFM, 154, 63–90, 1985.

    Article  Google Scholar 

  • L. Friedel. Druckabfall bei der Strömung von Gas-Dampf-Flüssigkeitsgemischen in Rohren. Chem. Ing. Tech., 50, 167–180, 1978.

    Article  Google Scholar 

  • G. Govier, K. Aziz. The Flow of Complex Mixtures in Pipes. Reinhold Van Nostrand Co., 1972.

    Google Scholar 

  • H. Henry, H. Fauske. Two-Phase Critical Flow of One-Component Mixtures in Nozzles, Orifices and Short Tubes. Trans. ASME, J. Heat Transfer, 95, 179–187, 1971.

    Article  Google Scholar 

  • R. Henry, M. Grolmes, H. Fauske. Pressure-Pulse Propagation in Two-Phase One-and Two-Component Mixtures. Technical Report ANL-7792, Argonne National Laboratory, 1971.

    Google Scholar 

  • W. Idsinga, N. Todreas, R. Bowring. An Assessment of Two-Phase Pressure Drop Correlations for Steam-Water Systems. Int. J. Multiphase Flow, 3, 401–413, 1977.

    Article  Google Scholar 

  • M. Ishii. Thermo-Fluid Dynamic Theory of Two-Phase Flow. Eyrolles, Paris, 1975.

    MATH  Google Scholar 

  • M. Ishii. One-Dimensional Drift-Flux Model and Constitutive Equations for Relative Motion Between Phases in Various Two-Phase Flow Regimes. Technical Report ANL-7747, Argonne National Laboratory, Ill., USA, 1977.

    Google Scholar 

  • T. Knapp, J. W. Daily, F. G. Hammit. Cavitation. MvGraw-Hill, New York, 1970.

    Google Scholar 

  • W. Lauterborn, H. Bolle. Experimental Investigation of Cavitation Bubble Collapse in the Neighbourhood of a Solid Boundary. JFM, 72, 391–399, 1975.

    Article  Google Scholar 

  • Y. Lecoffre. Cavitation Bubble Trackers. Balkema, Rotterdam, Brookfield, 1999.

    Google Scholar 

  • M. Ledinegg. Instabilität der Strömung bei natürlichem und Zwangsumlauf. Wärme, 61, 891–908, 1938.

    Google Scholar 

  • H. Lemonnier, Z. Bilicki. Steady Two-Phase Choked Flow in Channels of Variable Cross Sectional Area. Multiphase Science and Technology, 8, 257–353, 1994.

    Google Scholar 

  • S. P. Lin, R. D. Reitz. Drop and Spray Formation from a Liquid Jet. Ann. Rev. Fluid Mech., 30, 85–105, 1998.

    Article  MathSciNet  Google Scholar 

  • R. Lockhart, R. Martinelli. Proposed Correlation of Data for Isothermal Two-Phase Two-Component Flow in Pipes. Chem. Eng. Prog., 45, 39–48, 1947.

    Google Scholar 

  • P. A. Lottes. Expansion Losses in Two-Phase Flow. Nucl. Sci. Engng., 9, 26–31, 1961.

    Google Scholar 

  • J. M. Mandhane, G. A. Gregory, K. Aziz. A Flow Pattern Map for Gas-Liquid Flow in Horizontal Pipes. Int. J. of Multiphase Flow, 1, 537–553, 1974.

    Article  Google Scholar 

  • R. Martinelli and D. Nelson. Prediction of Pressure Drop During Forced Circulation Boiling of Water. Trans. ASME, 79, 695–702, 1948.

    Google Scholar 

  • F. J. Moody. Maximum Flow Rate of a Single-Component, Two-Phase Mixture. ASME J. Heat Transfer, 86, 134–142, 1965.

    Article  Google Scholar 

  • F. N. Peebles, H. J. Garber. Studies on the Motion of Gas Bubbles in Liquids. Chem. Eng. Progress, 49, 88–97, 1953.

    Google Scholar 

  • A. Phillipp, W. Lauterborn. Cavitation Erosion by Single Laser-Produced Bubbles. JFM, 361, 75–116, 1998.

    Article  Google Scholar 

  • M. Pilch, C. A. Erdman. Use of Breakup Time Data and Velocity History Data to Predict the Maximum Size of Stable Fragments for Acceleration-Induced Breakup of a Liquid Drop. Int. J. Multiphase Flow, 13, 714–757, 1987.

    Article  Google Scholar 

  • M. S. Plesset, R. B. Chapman. Collapse of an Initially Spherical Vapour Cavity in the Neighbourhood of a Solid Boundary. JFM, 47, 283–290, 1971.

    Article  Google Scholar 

  • A. Prernoli, D. Francesco, A. Prino. An Empirical Correlation for Evaluating Two-Phase Mixture Density under Adiabatic Conditions., European Two-Phase Flow Group Meeting, Milano, Italy, 1970.

    Google Scholar 

  • B. Richardson. Some Problems in Horizontal Two-Phase Two-Component Flow. Technical Report ANL-5949, Argonne National Laboratory, 1958.

    Google Scholar 

  • E. P. Rood. Review–Mechanisms of Cavitation Inception. Journal of Fluids Eng., 113, 163–175, 1991.

    Article  Google Scholar 

  • J. Sauer. Instationär kavitierende Strömungen. Ein neues Modell basierend auf Front Capturing und Blasendynamik. Dissertation, Universität Karlsruhe, 2000.

    Google Scholar 

  • W. Shyy, H. S. Udaykumar, M. M. Rao, R. W. Smith. Computational Fluid Dynamics with Moving Boundaries. Taylor Francis, Washington, D.C., London, 1996.

    Google Scholar 

  • W. A. Sirignano. Fluid Dynamics and Transport of Droplets and Sprays. Cambridge Univ. Press, Cambridge, 1999.

    Book  Google Scholar 

  • Y. Taitel. Flow Pattern Transition in Two-Phase Flow. Proc. of the 9th Int. Heat Transfer Conf., 237–254, Jerusalem, 1990.

    Google Scholar 

  • Y. Taitel, A. Dukler. A Model for Prediction of Flow Regime Transitions in horizontal and Near Horizontal Gas-Liquid Flow. AIChE J., 22, 47–55, 1976.

    Article  Google Scholar 

  • Y. Taitel, D. Borneo, A. E. Dukler. Modelling Flow Pattern Transitions for Steady Upward Gas-Liquid Flow in Vertical Tubes. AICh. E. J., 26, 345–354, 1980.

    Article  Google Scholar 

  • L. Velasco. L’écoulement Biphasique A Travers un Elargissement Brusque. PhD Thesis, Université Catholique de Louvain, Dép. Thermodyn. et Turbomach., 1975.

    Google Scholar 

  • G. Wallis. One-Dimensional Two-Phase Flow. McGraw-Hill, 1969.

    Google Scholar 

  • G. B. Wallis. Critical Two-Phase Flow. Int. J. Multiphase Flow, 6, 97–112, 1980.

    Article  Google Scholar 

  • J. Weismann, A. Husain, B. Harshe. Two-Phase Pressure Drop Across Area Changes and Restrictions. Two-Phase Transport and Reactor Safety, 4, 1281–1316, 1976.

    Google Scholar 

  • P. B. Whalley. Data Bank for Pressure Loss Correlations, a Comparative Study. Unveröffentlicht, zitiert in Short Courses on Modelling and Computation of Multiphase Flows, ETH Zürich, 1999, 1981

    Google Scholar 

  • G. Yadigaroglou. Two-Phase Flow Instabilities and Propagation Phenomena. J. M. Delhaye, M. Giot, M. L. Riethmüller, ed., Thermohydraulics of Two-Phase Systems for Industrial Design and Nuclear Engineering, 353–403. Hemishpere Publishing, Washington, 1981.

    Google Scholar 

  • G. Yadigaroglou. Short Course on Modelling and Computation of Multiphase Flows., Swiss Federal Institute of Technology, ETH, Zürich, Switzerland, 1999.

    Google Scholar 

  • G. Yadigaroglou, J. R. T. Lahey. On the Various Forms of the Conservation Equations in Two-Phase Flow. Int. J. of Multiphase Flow, 2, 477–194, 1976.

    Article  Google Scholar 

  • C. H. Yih. Stratified Flows. Academic Press, New York, 1975.

    Google Scholar 

  • H. Zuber, J. A. Findlay. Average Volumetric Concentration in Two-Phase Flow Systems. J. Heat Transfer, 87, 453–468. 1965.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Oertel, H. (2001). Strömungen mit mehreren Phasen. In: Oertel, H. (eds) Prandtl-Führer durch die Strömungslehre. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-94254-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-94254-8_9

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-322-94255-5

  • Online ISBN: 978-3-322-94254-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics