Skip to main content

Bioströmungsmechanik

  • Chapter
  • 312 Accesses

Zusammenfassung

Im Gegensatz zu den vorangegangenen Kapiteln befasst sich die Bioströmungsmechanik mit Strömungen, die von flexiblen biologischen Oberflächen aufgeprägt werden. Man unterscheidet die Umströmung von Lebewesen in Luft bzw. in Wasser, wie den Vogelflug oder das Schwimmen der Fische und Innenströmungen, wie z.B. der geschlossene Blutkreislauf von Lebewesen. Die Evolution hat in den vergangenen Jahrmillionen für die Fortbewegung der Lebewesen je nach Größe und Gewicht das Kriechen, Laufen, Schwimmen, Gleiten bzw. Fliegen entwickelt.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • D. M. Bushnell. Drag Reduction in Nature. Ann. Rev. Fluid Mech., 23, 65–79, 1991.

    Article  Google Scholar 

  • C. G. Caro, T. J. Pedley, W. A. Seed. The Mechanism of the Circulation. Oxford University Press, Oxford, 1978.

    Google Scholar 

  • R. T. W. L. Conroy, J. N. Mills. Human Circadian Rhythms. Churchill, London, 1970.

    Google Scholar 

  • R. de Simone. Three-Dimensional Color Doppler. Futura Publishing, Armonk, New York, 1999.

    Google Scholar 

  • O. Dössel. Bildgebende Verfahren in der Medizin. Springer, Berlin, Heidelberg, 2000.

    Google Scholar 

  • M. H. Friedman, C. B. Bargeron, D. D. Duncan, G. M. Hutchins, F. F. Mark. Effects of Arterial Compliance and Non-Newtonian Rheology on Correlations between Internal Thickness and Wall Shear. J. of Biomechanical Engineering, 114, 317–320, 1992.

    Article  Google Scholar 

  • Y. C. Fang. Biomechanics - Motion, Flow, Stress and Growth. Springer, New York, Berlin, Heidelberg, 1990.

    Google Scholar 

  • Y. C. Fung. Biomechanics - Mechanical Properties of Living Tissues. Springer, Berlin, Heidelberg, New York, 1993.

    Google Scholar 

  • Y. C. Fung. Biomechanics Circulation. Springer, Berlin, Heidelberg, New York, 1997.

    Google Scholar 

  • L. Glass, P. J. Hunter, A. D. McCulloch, ed. Theory of Heart Biomechanics, Biophysics and Nonlinear Dynamics of Cardiac Function. Springer, Berlin, Heidelberg, New York, 1991.

    Google Scholar 

  • J. Gray. Animal Locomotion. Weidenfeld Nicolson, London, 1968.

    Google Scholar 

  • M. Handke, D. M. Schäfer, G. Müller, A. Schöchlin, E. Magosaki, A. Geibel. Dynamic Changes of Atrial Septal Defect Area New Insights by Three-Dimensional Volume-Rendered Echocardiography with High Temporal Resolution. Eur. J. Echocardiography, 2, 46–51, 2001.

    Google Scholar 

  • K. Hayashi, Y. Yanai, T. Naiki. A 3D-LDA Study of the Relation between Wall Shear Stress and Intimai Thickness in a Human Aortic Bifurcation. J. of Biomechanical Engineering, 118, 273–279, 1996.

    Article  Google Scholar 

  • P. J. Hunter, B. H. Smaill, P. M. F. Nielsen, J. J. le Grice. A Mathematical Model of Cardiac Anatomy. Computational Biology of the Heart. John Wiley Sons, Chichester, 1997.

    Google Scholar 

  • J. P. Keener, A. V. Panfilov. The Effects of Geometry and Fibre Orientation on Propagation and Extracular Potentials in Myocardium. A. V. Panfilov, A. V. Holden, ed., Computational Biology of the Heart. John Wiley Sons, Chichester, 1997.

    Google Scholar 

  • U. Kertzscher, K. Affeld. Messung der Wandschubspannung in Modellen von Blutgefäßen. Biomedizinische Technik, 45, 75–126, 2000.

    Google Scholar 

  • D. N. Ku. Blood Flow in Arteries. Ann. Rev. Fluid Mech., 29, 399–434, 1997.

    Article  MathSciNet  Google Scholar 

  • D. Liepsch. Flow in Tubes and Arteries–A Comparison. Biorheology, 23, 395–433, 1986.

    Google Scholar 

  • D. Liepsch, ed. Biofluid Mechanics, Proceedings of the 3rd International Symposium, 17 of Fortschritt-Berichte/VDI. VDI Verlag, Düsseldorf, 1994.

    Google Scholar 

  • D. Liepsch. The Dynamics of Pulsatile Flow in Distensible Model Arteries. Technology and Health Care, 3, 185–199, 1995.

    Google Scholar 

  • D. Liepsch, G. Thurston, M. Lee. Studies of Fluids Simulating Blood-like Rheological Properties and Applications in Models of Arterial Branches. Biorheology, 39–52, 1991.

    Google Scholar 

  • D. Liepsch, S. Moravec. Pulsatile Flow of Non-Newtonian Fluid in Distensible Models of Human Arteries. Biorheology, 571–586, 1984.

    Google Scholar 

  • M. J. Lighthill. Mathematical Biofluidmechanics. Society for Industrial and Applied Mathematics, Philadelphia, 1975.

    Google Scholar 

  • J. Malmivuo, R. Plonsey. Bioelectromagnetism. Oxford University Press, New York, 1995.

    Google Scholar 

  • J. N. Mazumdar. Biofluid Mechanics. World Scientific, Singapore, London, 1992.

    Google Scholar 

  • D. A. McDonald. Blood Flow in Arteries. Edward Arnold, London, 1960.

    Google Scholar 

  • Motomiya. Flow Patterns in the Human Carotid Artery Bifurcation. Stroke A Journal of Cerebral Circulation, 15, 50–56, 1984.

    Google Scholar 

  • M P. Nash, P. J. Hunter. Computational Mechanics of the Heart. J. of Elasticity, 2001.

    Google Scholar 

  • A. V. Panfilov, A. V. Holden Computational Biology of the Heart. John Wiley Sons, Chichester, 1997.

    MATH  Google Scholar 

  • D. J. Patel, R. N. Vaishnay. Basic Hemodynamics and its Role in Disease Processes. University Park Press, Baltimore, 1980.

    Google Scholar 

  • T. J. Pedley. The Fluid Mechanics of Large Blood Vessels. Cambridge University Press, Cambridge, 1980.

    Book  MATH  Google Scholar 

  • K. Perktold, G. Rappitsch. Mathematical Modelling of Arterial Blood Flow and Correlation to Arteriosclerosis. Technology and Health Care, 3, 139–151, 1995.

    Google Scholar 

  • K. Perktold, M. Resch, H. Florian. Pulsatile Non-Newtonian Flow Characteristics in a Three-Dimensional Human Catroid Bifurcation Model. J. of Biomechanical Engineering, 113, 464–475, 1991.

    Article  Google Scholar 

  • C. S. Peskin, D. M. McQueen. Mechanical Equilibrium Determines the Fractal Fiber Architecture of Aortic Heart Valve Leaflets. American Journal of Physiology, 363–6135, 1994.

    Google Scholar 

  • C. S. Peskin, D. M. McQueen. Fluid Dynamics of the Heart and its Valves. Mathematical Modelling, Ecology, Physiology and Cell Biology. Prentice Hall, New Jersey, 1997.

    Google Scholar 

  • A. Poll, D. Liepsch, C. Weigand, J. McLean. Two and Three-Dimensional LDA Measurements and Shear Stress Calculations for a True Scale Elastic Model of a Dog Aorta with Stenosis. Automedica, 18, 163–210, 2000.

    Google Scholar 

  • L. Schauf, D. F. Moffet, S. B. Moffet. Medizinische Physiologie. Walter de Gruyter, Berlin, New York, 1993.

    Google Scholar 

  • E. Schubert, ed. Medizinische Physiologie. Walter de Gruyter, Berlin, New York, 1993.

    Google Scholar 

  • R. Skalak, N. Özkaya. Biofluid Mechanics. Ann. Rev. Fluid Mech., 21, 167–204, 1989.

    Article  Google Scholar 

  • M. Sugawara, F. Kajiya, A. Kitabatake, H. Matino. Blood Flow in the Heart and Large Vessels. Springer, Tokyo, Berlin, Heidelberg, 1989.

    Google Scholar 

  • C. D. Werner, F. B. Sachse, C. Baltes, O. Dössel. The Visible Man Dataset in Medical Education Electrophysiologie of the Human Heart. Proc. Third Users Conference of the National Library of Medcine’s Visible Human Project, 1–81, 2000.

    Google Scholar 

  • G. E. W. Wolstenholme. Circulatory and Respiratory Mass Transport. Churchill, London, 1969.

    Book  Google Scholar 

  • M. Zacek, E. Krause. Numerical Simulation of the Blood Flow in the Human Cardiovascular System. J. of Biomechanics, 29, 13–20, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Oertel, H. (2001). Bioströmungsmechanik. In: Oertel, H. (eds) Prandtl-Führer durch die Strömungslehre. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-94254-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-94254-8_12

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-322-94255-5

  • Online ISBN: 978-3-322-94254-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics