Skip to main content

Strömungen mit chemischen Reaktionen

  • Chapter
Prandtl-Führer durch die Strömungslehre
  • 313 Accesses

Zusammenfassung

Zentrales Thema dieses Kapitels über chemisch reaktive Strömungen ist es, die Kopplung zwischen chemischer Reaktion und Strömung zu beschreiben. Es gliedert sich in die Kapitel reaktionskinetische Grundlagen, laminare und turbulente Strömungen und Hyperschallströmungen. Zu diesen Klassen reaktiver Strömungen werden jeweils typische Anwendungen vorgestellt, wobei die Entwicklung von Modellvorstellungen unterstützt durch experimentelle Beobachtungen im Vordergrund steht.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

L. Prandtl - Ausgewählte Literatur

  • R. G. Abdel-Gayed, D. Bradley, N. M. Hamid, M. Lawes. Lewis Number Effects on Turbulent Burning Velocity. Proceedings of the Combustion Institute, 20, 505, 1984.

    Google Scholar 

  • A. A. Amsden, P. J. O’Rourke, T. D. Butler. KIVA II A Computer Program for Chemically Reactive Flows With Sprays. Technischer Bericht LA-11560-MS, Los Alamos National Laboratory, 1989.

    Google Scholar 

  • W. T. Ashurst. Modelling Turbulent Flame Propagation. Proceedings of the Combustion Institute, 25, 1075, 1995.

    Google Scholar 

  • W. P. Atkins. Physical Chemistry. Freeman, New York, 1990.

    Google Scholar 

  • R. W. Bilger. Turbulent Flows with Nonpremixed Reactants. P. A. Libby, F. A. Williams, ed., Turbulent reactive flows. Springer, Berlin, Heidelberg, New York, 1980.

    Google Scholar 

  • E. S. Bish, W. J. A. Dahm. Strained Dissipation and Reaction Layer Analysis of Nonequilibrium Chemistry in Turbulent Reacting Flows. Combustion and Flame, 100, 457, 1995.

    Article  Google Scholar 

  • H. Bockhorn, C. Chevalier, J. Warnatz, V. Weyrauch. Bildung von promptem NO in Kohlenwasserstoff-Luft-Flammen. 6. TECFLAM-Seminar. DLR, Stuttgart, 1990.

    Google Scholar 

  • R. Borghi, ed. Recent Advances in Aeronautical Science. Pergamon, London, 1984.

    Google Scholar 

  • D. Bradley. How Fast Can we Burn. Proceedings of the Combustion Institute, 24, 247, 1993.

    Google Scholar 

  • K. N. C. Bray. Turbulent Flows with Premixed Reactants. P. A. Libby, F. A. Williams, ed., Turbulent reacting flows. Springer, Berlin, Heidelberg, New York, 1980.

    Google Scholar 

  • S. Candel, D. Veynante, F. Lacas, N. Darabiha. Current Progress and Future Trends in Turbulent Combustion. Combustion Science and Technology, 98, 245, 1994.

    Article  Google Scholar 

  • M. E. Coltrin, R. J. Kee, F. M. Rupley. Surface Chemkin (Version 4.0) A Fortune Package for Analysing Heterogeneous Chemical Kinetics at a Solid-Surface-Gas-Phase Interface. Report SAND 90–8003B, Sandia National Laboratories, 1990.

    Google Scholar 

  • W. J. A. Dahm, E. S. Bish. High Resolution Measurements of Molecular Transport and Reaction Processes in Turbulent Combustion. T. Takeno, ed., Turbulence and molecular processes in combustion. Elsevier, New York, 1993.

    Google Scholar 

  • W. J. A. Dahm, G. Tryggvason, M. M. Zhuang. Integral Method Solution of Time-Dependent Strained Diffusion-Reaction Equations with Multi-Step Kinetics. Journal of Applied Mathematics, 1995.

    Google Scholar 

  • G. Damköhler. Z. Elektrochem, 46, 601, 1940.

    Google Scholar 

  • O. Deutschmann, F. Behrendt, J. Warnatz. Modelling and Simulation of Heterogeneous Oxidation of Methane an a Platinum Foil. Catal. Today, 21, 461–470, 1994.

    Article  Google Scholar 

  • O. Deutschmann, F. Behrendt, J Warnatz. Numerical Modelling of Catalytic Combustion. Proceedings of the Combustion Institute, 26, 1747–1754, 1996.

    Google Scholar 

  • O. Deutschmann, U. Riedel, J. Warnatz. Modelling of Nitrogen and Oxygen Recombination on Partial Catalytic Surfaces. Journal of Heat Transfer (Transactions of the ASME), 117, 495–501, 1995.

    Article  Google Scholar 

  • R. W. Dibble, A. R. Marsi, R. W. Bilger. The Spontaneous Raman Scattering Technique Applied to Non-Premixed Flames of Methane. Combustion and Flame, 67, 189, 1987.

    Article  Google Scholar 

  • C. Dopazo, E. E. O’Brian. An Approach to the Description of a Turbulent Mixture. Acta Astron., 1, 1239, 1974.

    Article  MATH  Google Scholar 

  • T. Dreier, B. Lange, J. Wolfrum, M. Zahn, F. Behrendt, J. Warnatz. CARS Measurements and Computations of the Structure of Laminar Stagnation-Point Methane-Air Counterflow Diffusion Flames. Proceedings of the Combustion Institute, 21, 1729, 1987.

    Google Scholar 

  • D. X. Du, R. L. Axelbaum, C. K. Law. Experiments on the Sooting Limits of Aerodynamically-Strained Diffusion Flames. Proceedings of the Combustion Institute, 22, 387, 1989.

    Google Scholar 

  • R. Günther. 50 Jahre Wissenschaft und Technik der Verbrennung, 39. BWK, 1987.

    Google Scholar 

  • E. Gutheil, H. Bockhorn. The Effect of Multi-Dimensional PDFs in Turbulent Reactive Flows at Moderate Damköhler Number. Physicochemical Hydrodynamics, 9, 525, 1987.

    Google Scholar 

  • J. B. Heywood. Internal Combustion Engine Fundamentals. McGraw-Hill, New York, 1988.

    Google Scholar 

  • K. H. Homann. Reaktionskinetik. Steinkopif, Darmstadt, 1975.

    Book  Google Scholar 

  • K. Homann, W. C. Solomon, J. Warnatz, H. G. Wagner, C. Zetzsch. Eine Methode zur Erzeugung von Fluoratomen in inerter Atmosphäre. Berichte der Bunsengesellschaft für Physikalische Chemie, 74, 585, 1970.

    Google Scholar 

  • W. P. Jones, J. H. Whitelaw. Modelling and Measurement in Turbulent Combustion. Proceedings of the Combustion Institute, 20, 233, 1985.

    Google Scholar 

  • J. H. Kent, R. W. Bilger. The Prediction of Turbulent Diffusion Flame Fields and Nitric Oxide Formation. Proceedings of the Combustion Institute, 16, 1643, 1976.

    Google Scholar 

  • A. R. Kerstein. Linear-Eddy Modelling of Turbulent Transport–Part 7 Finite-Rate Chemistry and Multi-Stream Mixing. JFM, 240, 289–313, 1992.

    Article  Google Scholar 

  • B. E. Launder, D. B. Spalding. Mathematical Models of Turbulence. Academic Press, London, New York, 1972.

    Google Scholar 

  • C. K. Law. Dynamics of Streched Flames. Proceedings of the Combustion Institute, 22, 1381, 1989.

    Google Scholar 

  • P. A. Libby, F. A. Williams. Fundamental Aspects of Turbulent Reacting Flows. P. A. Libby, F. A. Williams, ed., Turbulent reacting flows. Springer, Berlin, Heidelberg, New York, 1980.

    Google Scholar 

  • P. A. Libby, F. A. Williams. Turbulent Reacting Flows. Academic Press, New York, 1994.

    MATH  Google Scholar 

  • Y. Liu, B. Lenze. The Influence of Turbulence on the Burning Velocity of Premixed CH4–H2 Flames with Different Laminar Burning Velocities. Proceedings of the Combustion Institute, 22, 747, 1988.

    Google Scholar 

  • M. B. Long, M. D. Smooke, Y. Xu, R. M. Zurn, P. Lin, J. H. Frank. Computational and Experimental Study of OH and CH Radicals in Axisymmetric Laminar Diffusion Flames. Proceedings of the Combustion Institute, 24, 813, 1993.

    Google Scholar 

  • P. Magre, R. W. Dibble Finite Chemical Kinetic Effects in a Subsonic Turbulent Hydrogen Flame. Combustion and Flame, 73, 195, 1988.

    Article  Google Scholar 

  • A. R. Marsi, R. W. Bulger, R. W. Dibble. Turbulent Nonpremixed Flames of Methane Near Extinction Probability Density Function. Combustion and Flame, 73, 261, 1988.

    Article  Google Scholar 

  • P. A. McMurtry, S. Menon, A. R. Kerstein A Linear Eddy Sub-Grid Model for Turbulent Reacting Flows Application to Hydrogen-Air Combustion. Proceedings of the Combustion Institute, 24, 271, 1992.

    Google Scholar 

  • U. Metka, M. G. Schweitzer, H.-R.Volpp, J. Wolfram, J. Warnatz. In-Situ Detection of NO Chemisorbed on Platinum Using Infrared-Visible Sum-Frequency Generation SFG. Zeitschr. f. Phys. Chem., 214, 865–888, 2000.

    Google Scholar 

  • J. B. Moss. Simultaneous Measurements of Concentration and Velocity in an open Premixed Turbulent Flame. Combustion Science and Technology, 22, 115, 1979.

    Google Scholar 

  • U. Nowak, J. Warnatz. Sensitivity Analysis in Aliphatic Hydrocarbon Combustion. A. L. Kuhl, J. R. Bowen, J.-C. Leyer, A. Borisov, ed., Dynamics of reactive systems. American Institute of Aeronautics and Astronautics, New York, 1988.

    Google Scholar 

  • I. Orlandini, U. Riedel. Chemical Kinetics of NO-Removal by Pulsed Corona Discharges. Journal of Physics D (Applied Physics), 33, 2467–2474, 2000.

    Article  Google Scholar 

  • N. Peters. Laminar Flamelet Concepts in Turbulent Combustion. Proceedings of the Combustion Institute, 21, 1231, 1987.

    Google Scholar 

  • N. Peters, J. Warnatz. Numerical Methods in Laminar Flame Propagation. Vieweg, Braunschweig, Wiesbaden, 1982.

    Google Scholar 

  • T. Poinsot, D. Veynante, S. Candel. Diagrams of Premixed Turbulent Combustion Based on Direct Numerical Simulation. Proceedings of the Combustion Institute, 23, 613, 1991.

    Google Scholar 

  • S. B. Pope. PDF Methods for Turbulent Reacting Flows. Progress in Energy and Combustion Science, 11, 119, 1986.

    Article  MathSciNet  Google Scholar 

  • S. B. Pope. Computations of Turbulent Combustion Progress and Challenges. Proceedings of the Combustion Institute, 23, 591, 1991.

    Google Scholar 

  • W. C. Reynolds. The Potential and Limitations of Direct and Large Eddy Simulation. Whither Turbulence. Turbulence at Crossroads, 313. Springer, Berlin, Heidelberg, New York, 1989.

    Google Scholar 

  • R. P. Rhodes, ed. Turbulent Mixing in Non-Reactive and Reactive Flows. Plenum Press, New York, 1979.

    Google Scholar 

  • U. Riedel. Numerische Simulation reaktiver Hyperschallströmungen mit detaillierten Reaktionsmechanismen. Doktorarbeit, Ruprecht-Karls-Universität Heidelberg, 1992.

    Google Scholar 

  • U. Riedel, U. Maas, J. Warnatz. Detailed Numerical Modelling of Chemical and Thermal Nonequilibrium in Hypersonic Flows. Impact of Computing in Science and Engineering, 5, 20–52, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  • U. Riedel, U. Maas, J. Warnatz. Simulation of Nonequilibrium Hypersonic Flows. Computers and Fluids, 22, 285–294, 1993.

    Article  MATH  Google Scholar 

  • P. J. Robinson, K. A. Holbrook. Unimolecular reactions. Wiley-Interscience, New York, 1972.

    Google Scholar 

  • B. Rogg, F. Behrendt, J. Warnatz. Turbulent Non-Premixed Cumbustion in Partially Premixed Diffusion Flamelets with Detailed Chemistry. Proceedings of the Combustion Institute, 21, 1533, 1987.

    Google Scholar 

  • V. Sick, A. Arnold, E. Diessel, T. Dreier, W. Ketterle, B. Lange, J. Wolfrum, K. U. Thiele, F. Behrendt, J. Warnatz. Two-Dimensional Laser Diagnostics and Modelling of Counterflow Diffusion Flames. Proceedings of the Combustion Institute, 23, 495, 1991.

    Google Scholar 

  • M. D. Smooke, R. E. Mitchell, D. E. Keyes. Numerical Solution of Two-Dimensional Axisymmetric Laminar Diffusion Flames. Combustion Science and Technology, 67, 85, 1989.

    Article  Google Scholar 

  • D. B. Spalding. Mixing and Chemical Reaction in Steady Confined Turbulent Flames. Proceedings of the Combustion Institute, 13, 649, 1970.

    Google Scholar 

  • G. Stahl, J. Warnatz Numerical Investigation of Strained Premixed CH4-Air Flames up to High Pressures. Combustion and Flame, 85, 285, 1991.

    Article  Google Scholar 

  • H. Tsuji, I. Yamaoka. The Counterflow Diffusion Flame in the Forward Stagnation Region of a Porous Cylinder. Proceedings of the Combustion Institute, 11, 979, 1967.

    Google Scholar 

  • J. Warnatz. The Structure of Laminar Alkane-, Alkene-, and Acetylene Flames. Proceedings of the Combustion Institute, 18, 369, 1981.

    Google Scholar 

  • J. Warnatz. The Mechanism of High Temperature Combustion of Propane and Butane. Combustion Science and Technology, 34, 177, 1983.

    Article  Google Scholar 

  • J. Warnatz. Critical Survey of Elementary Reaction Rate Coefficients in the C/H/O-System. W. C. Gardiner Jr., ed., Combustion chemistry. Springer, Berlin, Heidelberg, New York, 1984.

    Google Scholar 

  • J. Warnatz. Production and Homogeneous Selective Reduction of NO in Combustion Processes. R. Zellner, ed., Formation, Distribution and Chemical Transformation of Air Pollutants. Dechema, Frankfurt, 1987.

    Google Scholar 

  • J. Warnatz. Detailed Studies of Combustion Chemistry. Proceedings of the Contractors Meeting on EC Combustion Research, 172, Bruxelles, 1988.

    Google Scholar 

  • J. Warnatz. Resolution of Gas Phase and Surface Chemistry into Elementary Reactions. Proceedings of the Combustion Institute, 24, 553, 1993.

    Google Scholar 

  • J. Warnatz, U. Maas, R. W. Dibble. Verbrennung. Springer, Berlin, Heidelberg, 2001.

    Google Scholar 

  • J. Warnatz, U. Riedel, R. Schmidt. Different Levels of Air Dissociation Chemistry and its Coupling with Flow Models. J. J. Bertin, J. Periaux, J. Ballmann, ed., Advances in Hypersonics Modelling of Chemical and Thermal Nonequilibrium in Hypersonic Flows, 2, 223–232. Birkhäuser, 1992.

    Google Scholar 

  • C. K. Westbrook, F. L. Dryer. Chemical Kinetics and Modelling of Combustion Processes. Proceedings of the Combustion Institute, 18, 749, 1981.

    Google Scholar 

  • F. A. Williams. Combustion Theory. The Benjamin Cummings Publishing Company, Menlo Park, Reading, Don Mills, 1985.

    Google Scholar 

  • Y. B. Zeldovich, D. A. Frank-Kamenetskii. The Theory of Thermal Propagation of Flames. Zh Fiz Khim, 12, 100, 1938.

    Google Scholar 

  • D. K. Zerkle, M. D. Allendorf, M. Wolf, O. Deutschmann. Understanding Homogeneous and Heterogeneous Contributions to the Platinum-Catalyzed Partial Oxidation of Ethane in a ShortContact-Time Reactor. J. Catal, 196, 18–39, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Oertel, H. (2001). Strömungen mit chemischen Reaktionen. In: Oertel, H. (eds) Prandtl-Führer durch die Strömungslehre. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-94254-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-94254-8_10

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-322-94255-5

  • Online ISBN: 978-3-322-94254-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics