Advertisement

Das Lebesguesche Integral

  • Harro Heuser
Part of the Mathematische Leitfäden book series (MLF)

Zusammenfassung

Der Satz 108.3 über die gliedweise Integration monoton konvergenter Funktionen-folgen hinterläßt einen höchst unbefriedigenden Eindruck, weil die Integrierbarkeit der Grenzfunktion sich nicht aus den Voraussetzungen ergibt, sondern ausdrücklich gefordert werden muß. Gleichzeitig weist er aber auch darauf hin, wie dieser Mangel in sehr natürlicher Weise durch eine angemessene Verallgemeinerung des Riemannschen Integralbegriffes behoben werden kann. Ist nämlich — mit den Bezeichnungen des Satzes 108.3 — die Grenzfunktion f nicht notwendig über [a, b] R-integrierbar, bleibt aber die wachsende Folge der Integrale \( \int_a^b {f_n } dx \) unterhalb einer festen oberen Schranke (mit anderen Worten: ist sie konvergent), so können wir uns aus „Stetigkeitsgründen“ schwerlich der Versuchung erwehren, der Funktion f ein Integral durch die Festsetzung
$$ \int_a^b {fdx: = \lim \int_a^b {f_n dx} } $$
zuzuordnen. Satz 108.3 lehrt, daß dieses Integral mit dem Riemannschen übereinstimmt, falls f überhaupt R-integrierbar ist. Die vorliegende Nummer ist der präzisen Darstellung und Entfaltung dieses neuen Integralbegriffes gewidmet. Alle auftretenden Funktionen sind reell.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© B. G. Teubner, Stuttgart 1991

Authors and Affiliations

  • Harro Heuser
    • 1
  1. 1.Universität KarlsruheKarlsruheDeutschland

Personalised recommendations