Advertisement

Die Fixpunktsätze von Brouwer, Schauder und Kakutani

  • Harro Heuser
Part of the Mathematische Leitfäden book series (MLF)

Zusammenfassung

Im Laufe unserer Untersuchungen haben wir uns schon mehrfach davon überzeugen können, daß zahlreiche Probleme, die „rein mathematisch“ entstehen oder von den Anwendungen an uns herangetragen werden, auf die Frage hinauslaufen, ob eine vorgelegte Selbstabbildung f einer gewissen Menge X einen Fixpunkt besitzt, d. h., ob es in X ein Element \( \tilde x \) mit \( f\left( {\tilde x} \right) = \tilde x \) gibt. Dieser Frage haben wir uns schon sehr frühzeitig gestellt, nämlich in der Nr. 35, wo wir uns mit den Fixpunktsätzen 35.1, 35.2 und 35.4 auseinandergesetzt haben. Den „Kontraktionssatz“ 35.2 konnten wir geradezu spielend leicht zu dem ungewöhnlich kraftvollen und geschmeidigen Banachschen Fixpunktsatz 111.11 verallgemeinern. Dagegen ist der Versuch, den „allgemeinen Fixpunktsatz“ 35.4 aus der provinziellen Enge des Eindimensionalen herauszulösen, mit Schwierigkeiten von ganz anderen Größenordnungen befrachtet. Gerade diesen Versuch aber wollen wir im vorliegenden Kapitel unternehmen. Die Frucht unserer Arbeit wird ein Arsenal von tiefliegenden und leistungsstarken Fixpunktsätzen sein, die gleichsam als fliegende Feuerwehr in den allerverschiedensten Gebieten der Mathematik und der Anwendungen eingesetzt werden können. Der entscheidende und beweistechnisch schwierigste Satz ist hierbei der berühmte Brouwersche Fixpunktsatz, den wir nun in Angriff nehmen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© B. G. Teubner, Stuttgart 1991

Authors and Affiliations

  • Harro Heuser
    • 1
  1. 1.Universität KarlsruheKarlsruheDeutschland

Personalised recommendations