Advertisement

Zusammenfassung

Zur Simulation von Mehrkörpersystemen mit flexiblen Körpern müssen die in den Kapiteln 4 und 5 erläuterten Bewegungsgleichungen von Balken und Finite-Elemente-Modellen mit den Bewegungsgleichungen starrer Körper kombiniert werden unter Beachtung der zwischen den Körpern wirksamen Kräfte. Zur Modellierung der Bewegungen verformbarer Körper in Mehrkörpersystemen wurde eine Vielzahl von Verfahren vorgeschlagen, die sich grob in vier Gruppen einteilen lassen, [22], [67]
  • die Methode des bewegten Bezugssystems,

  • inkrementelle Finite-Elemente-Methoden,

  • Finite-Elemente-Methoden, bei denen große Rotationen der in den Knoten festen Koordinatensysteme durch Winkel beschrieben werden,

  • Finite-Elemente-Methoden, die große Elementbewegungen durch Knotenkoordinaten und ihre materiellen Ableitungen angeben.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. [1]
    ABAQUS, User’s Manual, Vol. I and Vol II. Karlsson & Sorensen, Inc., Hibbit, 1995.Google Scholar
  2. [2]
    O. P. Agrawal, A. A. Shabana, Dynamic Analysis of Multibody Systems Using Component Modes. Computers & Structures, 21 (6), 1985, pp. 1303–1312.CrossRefGoogle Scholar
  3. [3]
    O. P. Agrawal, A. A. Shabana, Application of Deformable-Body Mean Axis to Flexible Multibody System Dynamics. Computer Methods in Applied Mechanics and Engineering, 56, 1986, pp. 217–245.CrossRefzbMATHGoogle Scholar
  4. [4]
    W. W. Armstrong, Recursive Solution to the Equations of Motion of an N Link Manipulator, in Proc. of 5th World Congress Theory of Machines and Mechanisms, 1979, pp. 1343–1346.Google Scholar
  5. [5]
    A. K. Banerjee, Block-Diagonal Equations for Multibody Elastodynamics with Geometric Stiffness and Constraints. Journal of Guidance, Control, and Dynamics, 16 (6), 1993, pp. 1092–1100.CrossRefzbMATHGoogle Scholar
  6. [6]
    A. K. Banerjee, J. M. Dickens, Dynamics of an Arbitrary Flexible Body in Large Rotation and Translation. AIAA J. Guidance, 13 (2), 1990, pp. 221–227.CrossRefGoogle Scholar
  7. [7]
    K. J. Bathe, Finite-Elemente-Methoden. Springer-Verlag, Berlin, 1986.CrossRefzbMATHGoogle Scholar
  8. [8]
    M. Botz, Zur Dynamik von Mehrkörpersystemen mit elastischen Balken, Technische Hochschule Darmstadt, Fachbereich Mechanik, Dissertation, 1992.Google Scholar
  9. [9]
    C. A. Brebbia, Finite Element Systems, A Handbook. Springer-Verlag, Berlin, 1982.CrossRefzbMATHGoogle Scholar
  10. [10]
    H. Bremer, Dynamik und Regelung mechanischer Systeme. Teubner Studienbücher, Mechanik, B. G. Teubner, Stuttgart, 1988.CrossRefzbMATHGoogle Scholar
  11. [11]
    F. Buckens, The Influence of Elastic Components on the Attitude Stability of a Satellite, in Proc. of Fifth International Symposium on Space Technology and Science, Tokyo, 1963, AGNE Publishers, pp. 193–203.Google Scholar
  12. [12]
    A. Budó, Theoretische Mechanik. 4. Aufl., Deutscher Verlag der Wissenschaften, Berlin, 1967.Google Scholar
  13. [13]
    J. R. Canavin, Vibration of a Flexible Spacecraft with Momentum Exchange Controllers, University of California, Los Angeles, Dissertation, 1976.Google Scholar
  14. [14]
    J. R. Canavin, P. W. Likins, Floating Reference Frames for Flexible Spacecraft, in Proc. of AIAA 15th Aerospace Sciences Meeting, Los Angeles, Cal., 1977, pp. 1–13.Google Scholar
  15. [15]
    R. K. Cavin III, A. R. Dusto, Hamilton’s Principle: Finite-Element Methods and Flexible Body Dynamics. AIAA Journal, 15 (12), 1977, pp. 1684–1690.CrossRefzbMATHGoogle Scholar
  16. [16]
    R. R. Craig, M. C. C. Bampton, Coupling of Substructures for Dynamic Analysis. AIAA Journal, 6 (7), 1968, pp. 1313–1319.CrossRefzbMATHGoogle Scholar
  17. [17]
    R. R. Craig, C.- J. C.ang, On the Use of Attachment Modes in Substructure Coupling for Dynamic Analysis, Paper 77–405, in Proc. of Dynamics and Structural Dynamics AIAA/ASME 18th Structures, Structural Dynamics and Material Conference, 1977, pp. 89–99.Google Scholar
  18. [18]
    S. Dietz, H. Netter, D. Sachau, Fatigue Life Prediction by Coupling FEM and MBS Calculations, in Proc. of First Symp. on Multibody Dynamics and Vibr. at 16th Annual Conf. ASME on Mech. Vibr. and Noise, Sacramento, CA., 1997.Google Scholar
  19. [19]
    A. Duschek, Höhere Mathematik, I. Band. 4. Aufl., Springer-Verlag, Wien, 1965.Google Scholar
  20. [20]
    E. Eich-Soellner, C. Führer, Numerical Methods in Multibody Dynamics. Teubner-Verlag, Stuttgart, 1998.CrossRefzbMATHGoogle Scholar
  21. [21]
    A. Eichberger, Simulation von Mehrkörpersystemen auf parallelen Rechnerarchitekturen, Universität-Gesamthochschule Duisburg, Fachbereich Maschinenbau, Dissertation, 1993.Google Scholar
  22. [22]
    J. L. Escalona, H. A. Hussdien, A. A. Shabana, Application of the Absolute Nodal Coordinate Formulation. submitted for publication, 1997.Google Scholar
  23. [23]
    S. Falk, Technische Mechanik, Dritter Band: Mechanik des elastischen Körpers. Springer-Verlag, Berlin, 1969.Google Scholar
  24. [24]
    R. Featherstone, The Calculation of Robot Dynamics Using Articulated-Body Inertias. Robotics Research, 2 (1), 1983, pp. 13–30.CrossRefGoogle Scholar
  25. [25]
    R. Featherstone, Robot Dynamics Algorithms, Univ. of Edinburgh, Ph. D-Thesis, 1984.Google Scholar
  26. [26]
    C. Führer, Differential-algebraische Gleichungssysteme in mechanischen Mehrkörpersystemen, Mathematisches Institut, Technische Universität München, Dissertation, 1988.Google Scholar
  27. [27]
    J. Garcia de Jalon, E. Bayo, Kinematic and Dynamic Simulation of Multibody Systems, The Real Time Challenge. Mechanical Engineering Series, ed. F. F. Ling, Springer-Verlag, New York, 1994.Google Scholar
  28. [28]
    H. Gylden, Recherches sur la Rotation de la Terre. Actes de la Societe Royale des Sciences d’Upsal, 1871, pp. 1–21.Google Scholar
  29. [29]
    P. Hagedorn, Quasi-Comparison Functions in the Dynamics of Elastic Multibody Systems,in Proc. of 8th VPI&SU Symposium on Dynamics and Control of Large Structures, Blacksburg, VA, 1991, Virginia Polytechnic Institute and State University, pp. 97–108.Google Scholar
  30. [30]
    G. Hamel, Theoretische Mechanik. Berichtigter Reprint 1978, Die Grundlehren der mathematischen Wissenschaften, Eds. W. Blaschke, et al.,Vol. 57, Springer-Verlag, Berlin, 1949.Google Scholar
  31. [31]
    E. J. Haug, Computer-Aided Kinematics and Dynamics of Mechanical Systems, Volume I: Basic Methods. Allyn and Bacon, Boston, 1989.Google Scholar
  32. [32]
    E. J. Haug, R. C. Deyo, Eds. Real-Time Integration Methods for Mechanical System Simulation, NATO ASI Series F: Computer and Systems Sciences, vol. 69, Springer-Verlag, Berlin, 1991.Google Scholar
  33. [33]
    R. L. Huston, Multibody Dynamics. Butterworth-Heinemann, Boston, 1990.Google Scholar
  34. [34]
    M. Jahnke, Ein Beitrag zur Untersuchung elastischer Mehrkörpersysteme unter Nutzung von FiniteElemente-Software. Fortschr.-Ber. der VDI-Zeitschr., Reihe 11: Schwingungstechnik, Nr. 214, VDI-Verlag, Düsseldorf, 1994.Google Scholar
  35. [35]
    T. R. Kane, D. A. Levinson, Large Motions of Unrestrained Space Trusses. Journal of the Astronautical Sciences, 28 (1), 1980, pp. 49–88.MathSciNetGoogle Scholar
  36. [36]
    T. R. Kane, D. A. Levinson, Dynamics, Theory and Applications. McGraw-Hill, New York, 1985.Google Scholar
  37. [37]
    T. Klisch, Kontaktmechanik in Starrkörpersystemen, Universität Karlsruhe, Fakultät für Maschinenbau, Dissertation, Shaker Verlag, Aachen, 1997.Google Scholar
  38. [38]
    K. Klotter, Technische Schwingungslehre, Zweiter Band: Schwinger mit mehreren Freiheitsgraden. Springer-Verlag, Berlin, 1960.CrossRefGoogle Scholar
  39. [39]
    K. Knopp, Theorie und Anwendung der unendlichen Reihen. 4. Aufl., Die Grundlehren der mathematischen Wissenschaften, Eds. W. Blaschke, et al.,Vol. II, Springer-Verlag, Berlin, 1947.Google Scholar
  40. [40]
    K. Knothe, H. Wessels, Finite Elemente. Springer-Verlag, Berlin, 1991.zbMATHGoogle Scholar
  41. [41]
    W. P. Koppens, The Dynamics of Systems of Deformable Bodies, TU Eindhoven, Dissertation, 1989.Google Scholar
  42. [42]
    W. P. Koppens, et al., The Dynamics of a Deformable Body Experiencing Large Displacements. J. Appl. Mech., 55, 1988, pp. 676–680.Google Scholar
  43. [43]
    R. A. Laskin, P. W. Likins, R. W. Longman, Dynamical Equations of a Free-Free Beam Subject to Large Overall Motions. J. Astronautical Society, XXXI (4), 1983, pp. 507–528.Google Scholar
  44. [44]
    P. W. Likins, Modal Method for Analysis of Free Rotations of Space-craft. AIAA J., 5 (7), 1967, pp. 1304–1308.CrossRefGoogle Scholar
  45. [45]
    C. Lubich, et al., MEXX — Numerical Software for the Integration of Constrained Mechanical Multi-body Systems,Konrad Zuse Informationszentrum für Informationstechnik, Berlin, Preprint SC 92–12 1992.Google Scholar
  46. [46]
    K. Magnus, Schwingungen. B. G. Teubner, Stuttgart, 1969.zbMATHGoogle Scholar
  47. [47]
    D. Mangler, Die Berechnung geometrisch nichtlinearer Probleme der Dynamik unter Nutzung linearer FEM-Programme, Otto-von-Guericke-Universität, Magdeburg, Dissertation, 1994.Google Scholar
  48. [48]
    L. Meirovitch, Analytical Methods in Vibrations. The MacMillan Company, New York, 1967.zbMATHGoogle Scholar
  49. [49]
    L. Meirovitch, P. Hagedor, A New Approach to the Modelling of Distributed Non-Self-Adjoined Systems. Journal of Sound id Vibration, 178 (2), 1994, pp. 227–241.CrossRefzbMATHGoogle Scholar
  50. [50]
    L. Meirovitch, M. K. Kwak, A Method for Improving the Convergence Characteristics of Substructure Synthesis, in Proc. of:nt. Symp. on Advanced Computers for Dynamics and Design, Tsuchiura, Japan, 1989.Google Scholar
  51. [51]
    L. Meirovitch, M. K. Kwak, Convergence of the Classical Rayleigh-Ritz Method and the Finite Element Method. AIAA Journal, 28 (8), 1990, pp. 1509–1516.CrossRefGoogle Scholar
  52. [52]
    F. Melzer, Symbolisch-numerische Modellierung elastischer Mehrkörpersysteme mit Anwendung auf rechnerische Lebensdauervorhersagen, Universität Stuttgart, Dissertation, 1993.Google Scholar
  53. [53]
    M. P. Miller, Getting Started with MSC/NASTRAN - User’s Guide. MacNeal-Schwendler Corp., 1993.Google Scholar
  54. [54]
    R. D. Milne, Some Remarks on the Dynamics of Deformable Bodies. AIAA J., 6 (3), 1968, pp. 556–558.CrossRefGoogle Scholar
  55. [55]
    M. Otter, et al., An Object Oriented Data Model for Multibody Systems,in Proc. Int. Symp. on Advanced Multibody System Dynamics,(W. Schiehlen, ed.), Kluwer Acad. Publ., 1993, pp. 19–48.Google Scholar
  56. [56]
    R. E. Roberson, R. Schwertassek, Dynamics of Multibody Systems. Springer-Verlag, Berlin, 1988.CrossRefzbMATHGoogle Scholar
  57. [57]
    J. Ryu, S.-Sup-Kim, S.-Soo-Kim, A General Approach to Stress Stiffening Effects on Flexible Multi-body Dynamic Systems. Mech. Sti Act. & Mach., 22 (2), 1994, pp. 157–180.CrossRefGoogle Scholar
  58. [58]
    D. Sachau, Berücksichtigung vor, Körperverformung und Fügestellen in der Mehrkörpersimulation mit Anwendung auf aktive Raumj, thrtstrukturen, Universität Stuttgart, Dissertation, 1996.Google Scholar
  59. [59]
    T. Sandlass, Herleitung aller geon;etrischen Steifigkeitsterme eines Bernoulli-Balkens und Implementierung im SIMPACK-Präprozessc - BEAM, Universität Stuttgart, Studienarbeit, 1996.Google Scholar
  60. [60]
    W. O. Schiehlen, ed. Multibody Sterns Handbook, Springer-Verlag, Berlin, 1990.Google Scholar
  61. [61]
    R. Schwertassek, R. E. Roberson, A Perspective on Computer-Oriented Multibody Dynamical Formalisms and their Implementations, in Dynamics of Multibody Systems, IUTAM/IFToMM Symp., Udine 1985, ( G. Bianchi and W. Schiehlen, Eds.), Springer-Verlag, Berlin, 1986, pp. 261–273.CrossRefGoogle Scholar
  62. [62]
    R. Schwertassek, W. Rulka, Aspects of Efficient and Reliable Multibody System Simulation, in Real-Time Integration Methods for Mechanical System Simulation, ( E. J. Haug, R. C. Deyo, Eds.), Springer-Verlag, Berlin, 1991, pp. 55–96.Google Scholar
  63. [63]
    A. A. Shabana, Automated Analysis of Constrained Systems of Rigid and Flexible Bodies. Journal of Vibration, Acoustics, Stress and Reliability in Design, 107, 1985, pp. 431–439.CrossRefGoogle Scholar
  64. [64]
    A. A. Shabana, Dynamics of Multibody Systems. J. Wiley & Sons, New York, 1989.zbMATHGoogle Scholar
  65. [65]
    A. A. Shabana, Finite Element Incremental Approach and Exact Rigid Body Inertia. ASME Journal of Mechanical Design, vol. 118 (2), 1996, pp. 171–178.CrossRefGoogle Scholar
  66. [66]
    A. A. Shabana, Resonance Conditions and Deformable Body Coordinate Systems. J. Sound and Vibration, 192 (1), 1996, pp. 389–398.CrossRefGoogle Scholar
  67. [67]
    A. A. Shabana, Flexible Multibody Dynamics: Review of Past and Recent Developments. Multibody System Dynamics, 1, 1997, pp. 189–222.CrossRefzbMATHMathSciNetGoogle Scholar
  68. [68]
    I. H. Shames, C. L. Dym, Energy and Finite Element Methods in Structural Mechanics. Hemisphere Pub. Co., New York, 1985.Google Scholar
  69. [69]
    J. C. Simo, L. Vu-Quoc, On the Dynamics of Flexible Beams under Large Overall Motions — The Plane Case, Parts I and II. J. Appl. Mech., 53, 1986, pp. 849–854 and 855–863.Google Scholar
  70. [70]
    P. Sokol, Kinematik und Dynamik von Mehrkörperschleifen mit elastischen Körpern, Universität Gesamthochschule Duisburg, Dissertation, 1991.Google Scholar
  71. [71]
    K. Sorge, Mehrkörpersysteme mit starr-elastischen Subsystemen. Fortschr.-Ber. VDI, Reihe 11: Schwingungstechnik, Nr. 184, VDI-Verlag, Düsseldorf, 1993.Google Scholar
  72. [72]
    Swanson-Analysis-Syst., ANSYS User’s Manual for Rev. 5.0. Vol. I to IV, Swanson Analysis System Inc., Houston, PA, 1992.Google Scholar
  73. [73]
    I. Szabo, Geschichte der mechanischen Prinzipien. Birkhäuser-Verlag, Basel, 1979.CrossRefzbMATHGoogle Scholar
  74. [74]
    F. Tisserand, Traite de Mechanique Celeste. Gauthier-Villars, Paris, 1891.Google Scholar
  75. [75]
    W. Trautenberg, Integration der Bewegungssimulation in den Kontaktprozeß, in Proc. of Parametrische Produktmodellierung — Einsatz von CA-Systemen im Entwicklungsprozeß, Berlin, 1997, TU-Berlin, Inst. Fahrzeugtechnik.Google Scholar
  76. [76]
    VDI, Einfache räumliche Kurbelgetriebe, Systematik und Begriffsbestimmungen, VDI-Gesellschaft für Konstruktion und Entwicklung, VDI-Richtlinien VDI 2156, September 1975.Google Scholar
  77. [77]
    J. R. Velman, Simulation Results for a Dual-Spin Spacecraft, in Proc. Sympos. Attitude Stabilization and Control of Dual-Spin Spacecraft, SAMSO-TR-68–191, Air Force Systems Command, Space and Missile Systems Organization, El Segundo CA, 1967, pp. 11–23.Google Scholar
  78. [78]
    A. F. Vereshchagin, Computer Simulation of the Dynamics of Complicated Mechanisms of Robot-Manipulators. Engineering Cybernetics, (6), 1974, pp. 65–70.Google Scholar
  79. [79]
    B. F. Veubeke, The Dynamics of Flexible Bodies. Intl. J. Eng. Sci., 14, 1976, pp. 895–913.CrossRefzbMATHGoogle Scholar
  80. [80]
    B. F. Veubeke, Nonlinear Dynamics of Flexible Bodies, European Space Agency, Neuilly, France, Dynamics and Control of Non-Rigid Spacecraft, Special Report 117, July 1976.Google Scholar
  81. [81]
    O. Wallrapp, Die linearen Bewegungsgleichungen von elastischen Mehrkörperfahrzeugen, Deutsche Forschungsanstalt für Luft–und Raumfahrt (DLR), Inst. Dyn. Flugsysteme, Oberpfaffenhofen, Interner Bericht IB 515–80–4, 1980.Google Scholar
  82. [82]
    O. Wallrapp, Entwicklung rechnergestützter Methoden der Mehrkörperdynamik in der Fahrzeugtechnik, Deutsche Forschungsanstalt für Luft-und Raumfahrt (DLR), Köln, Forschungsbericht DFVLR-FB 89–17, 1989.Google Scholar
  83. [83]
    O. Wallrapp, Standard Input Data of Flexible Bodies for Multibody System Codes,DLR, German Aerospace Establishment, Institute for Robotics and System Dynamics, Oberpfaffenhofen, Report IB 515–93–04,1993.Google Scholar
  84. [84]
    O. Wallrapp, Standard Input Data of Flexible Members for Multibody System Codes, in Advanced Multibody System Dynamics — Simulation and Software Tools, ( W. Schiehlen, ed.), Kluwer Academic Publishers, Dordrecht, 1993, pp. 445–450.Google Scholar
  85. [85]
    O. Wallrapp, Beam — A Pre-Processor for Mode Shape Analysis of Straight Beam Structures and Generation of the SID File for MBS Codes, User’s Manual, Deutsche Forschungsanstalt für Luft-und Raumfahrt (DLR), Inst. Robotik und Systemdynamik, Oberpfaffenhofen, Report Version 3. 0, March 1994.Google Scholar
  86. [86]
    O. Wallrapp, Standardization of Flexible Body Modeling in Multibody System Codes, Part 1: Definition of Standard Input Data. Mechanics of Structures and Machines, 22 (3), 1994, pp. 283–304.CrossRefMathSciNetGoogle Scholar
  87. [87]
    O. Wallrapp, A. Eichberger, J. Gerl, FEMBS — An Interface Between FEM Codes and MBS Codes, User Manual for ANSYS, NASTRAN, and ABAQUS, INTEC GmbH, Wessling, Report Version 3. 0, January 1997.Google Scholar
  88. [88]
    O. Wallrapp, D. Sachau, Space Flight Dynamic Simulations Using Finite Element Analysis Results in Multibody System Codes,in Proc. of 2nd Intl. Conf. on Comp. Struct. Technology, Athens, Greece, 1994, CIVIL-COMP Press, pp. 149–158.Google Scholar
  89. [89]
    O. Wallrapp, J. Santos, J. Ryu, Superposition Method for Stress Stiffening in Flexible Multibody Dynamics, in Dynamics of Flexible Structures in Space, (C. L. Kirk and J. L. Junkins, Eds.), Comp. Mech. Pub1. & Springer-Verlag, London, 1990, pp. 233–247.Google Scholar
  90. [90]
    K. Washizu, Variational Methods in Elasticity and Plasticity. Third Ed., Pergamon Press, Oxford, 1982.zbMATHGoogle Scholar
  91. [91]
    R. A. Wehage, Application of Matrix Partitioning and Recursive Projection to Order n Solution of Constrained Equations of Motion, in Proc. of 20th Biennial ASME Mechanisms Conference, Orlando, Florida, 1988.Google Scholar
  92. [92]
    J. Wittenburg, Dynamics of Systems of Rigid Bodies. Leitfäden der angewandten Mathematik und Mechanik, ed. H. Görtler, Vol. 33, B. G. Teubner, Stuttgart, 1977.Google Scholar
  93. [93]
    H. J. Yim, B. Dopker, E. J. Haug, Computational Methods for Stress Analysis of Mechanical Components in Dynamic Systems, in Proc. of 1st Annual Symp. on Mech. System Design in a Concurrent Eng. Environment, Univ. of Iowa, Iowa City, 1989.Google Scholar
  94. [94]
    W. S. Yoo, E. J. Haug, Dynamics of Articulated Structures, Part I, Theory. Jour. Struct. Mech., 14 (1), 1986, pp. 105–126.CrossRefGoogle Scholar
  95. [95]
    O. C. Zienkiewicz, Methode der finiten Elemente. Carl Hanser Verlag, München, 1984.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1999

Authors and Affiliations

  • Richard Schwertassek
    • 1
  • Oskar Wallrapp
    • 2
  1. 1.OberpfaffenhofenDeutschland
  2. 2.WeßlingDeutschland

Personalised recommendations