Skip to main content

Catalytic and Affinity Amperometric Biosensors for Phenols, Phosphates, and Atrazine: How Transduction Can Improve Performance

  • Chapter
Biosensors for Environmental Diagnostics

Abstract

Three cases are presented where the rational design of transduction chemistries has led to improved catalytic and affinity electrochemical biosensors for environmental applications. Firstly, the improvement of the reductive recycling of tyrosinase-produced quinones by means of rational modification of electrode surfaces is demonstrated resulting in two orders of magnitude lowering of detection limits, and more than one order of magnitude improvement of the life time of phenolics sensors. Secondly, a phosphorylase A-phosphoglucomutase-glucose 6-phosphate dehydrogenase biosensor is demonstrated, that based on the use of this three-enzyme cascade and combined with new NADH oxidation mediators makes possible reagentless biosensors for phosphate detection. Thirdly, an immunosensor for atrazine is presented that based on electrochemically “wired” peroxidase-labelled atrazine and its competition for the binding sites of immobilised antibodies, reached µg 1−1 (ppb) detection limits and incubation times of minutes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Gründig, B., Strehlitz, B., Krabisch, C., Thielemann, H., Kotte, H., Gomoll, M., Kopinke, H., Pitzler, J. (1992): In: GBF-Monographs, Vol. 17. Biosensors: Fundamentals, Technologies and Applications (Schmid R.D.and Scheller F., eds). VCH, Weinheim. pp 275–285.

    Google Scholar 

  • Guilbault, G., Nanjo, M. (1975): A phosphate-selective electrode based on immobilised alkaline phosphatase and glucose oxidase. Anal. Chim. Acta 78, 69–74.

    Article  Google Scholar 

  • Guilbault, G., Cserfalvi, T. (1976): Ion selective electrodes for phosphate using enzyme systems. Anal. Lett. 9, 277–289.

    Article  Google Scholar 

  • Hedenmo, M., Narváez, A., Dominguez, E., Katakis, I. (1996): Reagentless amperometric glucose dehydrogenase biosensor based on electrocatalytic oxidation of NADH by osmium phenanthroline dione mediator. The Analyst 121, 1891–1895.

    Article  Google Scholar 

  • Hedenmo, M., Narvâez, A., Dominguez, E., Katakis, I. (1997): Improved mediated tyrosinase amperometric enzyme electrodes. J. Electroanal. Chem. 425, 1–11.

    Article  Google Scholar 

  • Ivnitski, D., Rishpon, J. (1996): A one-step, separation-free amperometric enzyme immunosensor. Biosens. Bioelectron. 11, 409–417.

    Article  Google Scholar 

  • Katakis, I., Heller, A. (1992): L-a-glycerophosphate and L-lactate electrodes based on the electrochemical “wiring” of oxidases. Anal. Chem. 64, 1008–1013.

    Article  Google Scholar 

  • Kotte, H., Gründig, B., Vorlop, K.-D., Strehlitz B., Stottmeister, U. (1995): Methylphenazonium-modified enzyme sensor based on polymer thick films for subnanomolar detection of phenols. Anal. Chem., 67, 65–70.

    Article  Google Scholar 

  • Kulys, J., Schmid, R.D. (1990): A sensitive enzyme electrode for phenol monitoring. Anal. Lett. 23, 589–597.

    Article  Google Scholar 

  • Kulys, J., Higgins, I., Bannister, J. (1992): Amperometric determination of phosphate ions by biosensor. Biosens. & Bioelectr. 7, 187–191.

    Article  Google Scholar 

  • López, M.A., Ortega, F., Dominguez, E., Katakis, I. (1998): Electrochemical immunosensor for the detection of atrazine. J. Mol. Recogn., submitted.

    Google Scholar 

  • Lu, B., Iwuoha, E., Smyth, M., O`Kennedy, R. (1997): Development of an amperometric immunosensor for horseradish peroxidase (HRP) involving a nondiffusional osmium redox polymer co-immobilised with anti-HRP antibody. Anal. Commun. 34, 21–24.

    Article  Google Scholar 

  • Lu, B., Smyth, M., Quinn, J., Bogan, D., Kennedy, R. (1996): Development of a regenerable amperometric immunosensor for 7-Hydroxycoumarin. Electroanalysis 8, 619–622.

    Article  Google Scholar 

  • Male, K., Luong, H. (1991): An FIA biosensor system for the determination of phosphate. Biosens. & Bioelectr. 6, 581–587.

    Article  Google Scholar 

  • Ortega, F., Dominguez, E., Jönsson-Petterson G., Gorton, L. (1993): Amperometric determination of phenolic compounds using a tyrosinase graphite electrode in a flow system. J. Biotechnol. 31, 289–300.

    Article  Google Scholar 

  • Parellada, J., Narvâez, A., López, M.A., Dominguez, E., Fernândez, J.J., Pavlov, V., Katakis, I. (1998): Amperometric immunosensors and enzyme electrodes for environmental applications. Anal. Chim. Acta, submitted. 107

    Google Scholar 

  • Su, Y., Mascini, M. (1995): AP-GOD biosensor based on a modified poly(phenol) film electrode and its application in the determination of low levels of phosphate. Anal. Lett. 28, 1359–1378.

    Article  Google Scholar 

  • Vreeke, M., Rocca, P., Heller, A. (1995): Direct electrical detection of dissolved biotinylated horseradish peroxidase, biotin, and avidin. Anal. Chem. 67, 303–306.

    Article  Google Scholar 

  • Watanabe, E., Endo, H., Toyama, K. (1988): Determination of phosphate ions with an enzyme sensor system. Biosens. & Bioelectr. 3, 297–306.

    Google Scholar 

  • Wittmann, C., Hock, B. (1989): Improved enzyme immunoassay for the analysis of striazines in water samples. Food Agric. Immunol. 1, 211–224.

    Article  Google Scholar 

  • Wollenberger, U., Schubert, F., Scheller, F. (1992): Biosensor for sensitive phosphate detection. Sensors & Actuators B 7, 412–415.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 B. G. Teubner Verlagsgesellschaft Leipzig

About this chapter

Cite this chapter

Narváez, A., López, M.A., González, E., Domínguez, E., Fernández, J.J., Katakis, I. (1998). Catalytic and Affinity Amperometric Biosensors for Phenols, Phosphates, and Atrazine: How Transduction Can Improve Performance. In: Hock, B., Barceló, D., Cammann, K., Hansen, PD., Turner, A.P.F. (eds) Biosensors for Environmental Diagnostics. Teubner-Reihe UMWELT. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-93454-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-93454-3_6

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-8154-3540-3

  • Online ISBN: 978-3-322-93454-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics