Skip to main content

Immunosensor Systems with Renewable Sensing Surfaces

  • Chapter
Biosensors for Environmental Diagnostics

Part of the book series: Teubner-Reihe UMWELT ((TRU))

Abstract

A complication emerges when antigens and antibodies interact in continuous-use immunosensor systems. This complication comprises the regeneration of the biological sensing surface. In the present work we report the development and the study of two strategies designed to overcome this limitation.

The first strategy is based on the construction of amperometric immunosensors using rigid immunocomposites. These materials contain a conducting polymer composite that acts as a support for the bulk-immobilized immunological material. The surface of these immunosensors is renewable. A simple polishing procedure uncovers a fresh immunocomposite surface ready for a new immunoassay. This contrasts with conventional, single-use devices. Furthermore, immunosensors of different sizes and shapes can be produced using these immunocomposites. The closeness between the immunoconjugate enzyme-label and the conducting sites on the surface of the sensor yields a higher electron transfer efficiency. This is clearly convenient when building amperometric devices. The simplicity of this strategy makes it particularly convenient for manual immunoassay methodologies.

The second strategy is based on an immunochemical analysis system featuring flow injection techniques. This system uses potentiometric detection with immunochemical reagents immobilized on magnetic particles where the sensing surface can be renewed after each analysis. Measurements are reproducible since the magnetic particles can be fixed to the surface of the sensor at will. The regeneration of the sensing surface is achieved by turning on or off a magnetic field. This is especially convenient in flow systems where other approaches to surface renewal may be difficult or cumbersome. The simplicity and flexibility of this strategy makes it particularly convenient for automated immunoassay methodologies. It is also versatile because a wide choice of immunological reagents can be used.

These two immunosensor systems were applied to the measurement of RIgG using a competitive technique. They were also used in the detection of GaRIgG using a sandwich technique, where peroxidase was the enzyme label for amperometric measurements and urease the label for potentiometric measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alegret S., Alonso J., Bartroll J., del Valle M., Jaffrezic-Renault N., Duvault-Herrera, Y. (1990): Flow-through pH-ISFET as detector in the determination of ammonia. Anal. Chim. Acta 231, 53–58.

    Article  Google Scholar 

  • Alegret, S. (1996): Rigid carbon-polymer biocomposites for electrochemical sensing. A review. Analyst 121, 1751–1758.

    Google Scholar 

  • Alegret, S., Alonso, J., Bartroll, J., Céspedes, F., Martínez-Fàbregas, E., del Valle, M. (1996b): Amperometric biosensors based on bulk-modified epoxy graphite biocomposites. Sensors and Materials 8, 147–153.

    Google Scholar 

  • Alegret, S., Céspedes, F., Martínez-Fàbregas E., Martorell, D., Morales, A., Centelles, D., Munoz, J. (1996a): Carbon-polymer biocomposites for amperometric sensing. Biosensors & Bioelectronics 11, 35–44.

    Article  Google Scholar 

  • Alwis, W.U., Wilson, G.S. (1987): Rapid heterogeneous competitive electrochemical immunoassay for IgG in the picomole range. Anal. Chem. 59, 2786–2789.

    Article  Google Scholar 

  • Alwis, W.U., Wilson, G.S. (1985): Rapid sub-picomole electrochemical enzyme immunoassay for Immunoglobulin G. Anal. Chem. 57, 2754–2756.

    Article  Google Scholar 

  • Blake, C., Gould, B.J. (1984): Use of enzymes in immunoassay techniques. A review. Analyst 109, 533–547.

    Google Scholar 

  • Blanchard, G.C., Taylor, C.G., Busey, B.R., Williamson, J. (1990): Regeneration of immunosorbent surface used in clinical, industrial and environmental biosensors. J. Immunol. Methods 130, 263.

    Article  Google Scholar 

  • Buerk, D.G. (1993): Biosensors. Theory and applications. Technomic Publishing Company, USA.

    Google Scholar 

  • Byfield, M.P., Abuknesha, R.A. (1994): Biochemical aspects of biosensors. Biosensors and Bioelectronics 9, 373–400.

    Article  Google Scholar 

  • Céspedes, F., Alegret, S. (1996): New materials for electrochemical sensing: glucose biosensors based on rigid carbon-polymer biocomposites. Food Technol. Biotechnol., Review 34, 143–146.

    Google Scholar 

  • Céspedes, F., Martínez-Fàbregas, E., Alegret, S. (1993a): Amperometric glucose biosensor based on an electrcatalytically bulk-modified epoxy-graphite biocomposite. Anal. Chim. Acta 284, 21–26.

    Article  Google Scholar 

  • Céspedes, F., Martínez-Fàbregas, E., Bartroll, J., Alegret, S. (1993b): Amperometric enzymatic glucose electrode based on an epoxy-graphite composite. Anal. Chim. Acta 273, 409–417.

    Article  Google Scholar 

  • Duan, Ch., Meyerhoff, M.E. (1994): Separation-free sandwich immunoassays using microporous gold electrodes and self-assembled monolayer/immobilized capture antibody. Anal Chem. 66, 1369–1377.

    Article  Google Scholar 

  • Dzantiev, A.V., Zherdev, A.V. (1996): Electrochemical immunosensors for determination of the pesticides 2,4-dichlorophenoxyacetic and 2,4,5trichlorophenoxyacetic acids. Biosensors and Bioelectronics 11, 179–185.

    Google Scholar 

  • Gascon, J., Martinez, E., Barceló, D. (1995): Determination of atrazine and alachlor in natural waters by a rapid-magnetic particle-based ELISA. Influence of common cross-reactants: deethylatrazine, deisopropylatrazine, simazine and metolachlor. Anal. Chim. Acta 311, 357–364.

    Article  Google Scholar 

  • Glazier, S.A., Rechnitz, G.A. (1991): Preparation and characterization of IgG-coated membranes for possible use as solid phases in enzyme immunosensors. Anal. Lett. 24, 1347–1362.

    Article  Google Scholar 

  • Gübitz, G., Shellum, C. (1993): Flow injection immunoassays. Anal. Chim. Acta 283, 421–428.

    Article  Google Scholar 

  • Hall, E.A.H. (1990): Biosensors. Open University Press, Biotechnology series, England.

    Google Scholar 

  • Hammock, B.D., Mummas, R.O. (1980): Immunochemical technologies in environmental analysis, p. 321. In: Recent Advances in Pesticide Analytical Methodology (Harvey, J. R. L., Zweig, eds). ACS, Washington, DC.

    Google Scholar 

  • Heinemann, W., Halsall, H.B. (1985): Strategies for electrochemical immunoassay. Anal. Chem. 57, 1321A - 1331A.

    Article  Google Scholar 

  • Ivnitskii, D.M., Sitdikov, R.A., Kurochkin, V.E. (1992): Flow-injection amperometric system for enzyme immunoassay. Anal. Chim. Acta 261, 45–52.

    Article  Google Scholar 

  • Kalâb, T., Sklâdal, R. (1995): A disposable amperometric immunosensor for 2,4dichlorophenoxyacetic acid. Anal. Chim. Acta 304, 361–368.

    Article  Google Scholar 

  • Kelly, T.A., Christian, G.D. (1982): Homogeneous enzymatic fluorescence immunoassay of serum IgG by continuous flow-injection analysis. Talanta 29, 1109–1112.

    Article  Google Scholar 

  • Killard, A.J., Deasy, B., O’Kennedy, R., Smyth, M.R. (1995): Antibodies. Production, functions and applications in biosensors. Trends in Anal. Chem. 14, 257–265.

    Google Scholar 

  • Kindervater, R., Künnecke, W., Schmid, R.D. (1990): Exchangeable immobilized enzyme reactor for enzyme inhibition tests in flow-injection analysis using a magnetic device. Determination of pesticides in drinking water. Anal. Chim. Acta 234, 113–117.

    Article  Google Scholar 

  • Lee, I.H., Meyerhoff, M.E. (1988): Enzyme-linked flow-injection immunoassay using immobilized secondary antibody. Mikrochim. Acta III, 207–221.

    Article  Google Scholar 

  • Leech, D. (1994): Affinity biosensors. Chemical Society Reviews, 205–213.

    Google Scholar 

  • Locascio-Brown, L., Plant, A.L., Horvath, V., Durst, R. (1990): Liposome flowinjection immunoassay: implications for sensitivity, dynamic range and antibody regeneration. Anal. Chem. 62, 2587–2593.

    Article  Google Scholar 

  • Marco, M.P., Gee, S., Hammock, B.D. (1995): Immunochemical techniques for environmental analysis. I. Immunosensors. Trends in Anal. Chem. 14, 341–350.

    Google Scholar 

  • Martorell, D., Céspedes F., Martínez-Fàbregas, E., Alegret, S. (1994): Amperometric determination of pesticides using a biosensor based on a polishable graphite-epoxy biocomposite. Anal. Chim. Acta 290, 343–348.

    Article  Google Scholar 

  • Martorell, D., Céspedes, F., Martínez-Fàbregas, E., Alegret, S. (1997): Determination of organophosphorus and carbamate pesticides using a biosensor based on a polishable 7,7,8,8-tetracyanoquinodimethane-modified graphite-epoxy biocomposite. Anal. Chim. Acta 337, 305–313.

    Article  Google Scholar 

  • Miller J.R. (1981): Anal. Proc. 18, 264–267.

    Google Scholar 

  • Morales, A., Céspedes, F., Munoz, J., Martínez-Fàbregas, E., Alegret, S. (1996): Hydrogen peroxide amperometric biosensor based on a peroxidase-graphiteepoxy biocomposite. Anal. Chim. Acta 332, 131–138.

    Article  Google Scholar 

  • Nelson, J.O., Karu, A.E., Wong, R.B. (1995): Immunoanalysis of Agrochemicals, Emerging Technologies. ACS Symp. Series, Vol 586, ACS, Washington DC.

    Book  Google Scholar 

  • North, J.R. (1985): Immunosensors: antibody-based biosensors. Trends in Biotechnology 3, 180–186.

    Article  Google Scholar 

  • Owen, V.M. (1994): Market requirements for advanced biosensors in healthcare. Biosensors and Bioelectronics 9 (6), xxix-xxxiii.

    Google Scholar 

  • Puchades, R., Maquieira, A., Atienza, J., Montoya, A. (1992): A comprehensive overview on the application of flow injection techniques in immunoanalysis. Crit. Rev. Analyt. Chem. 23, 301–321.

    Article  Google Scholar 

  • Rogers, K.R., Cao, C.J., Valdes, J.J., Eldfrawi, A.T., Eldfrawi, M.E. (1991): Fundam. Appl. Toxicol. 16, 810.

    Google Scholar 

  • Rook, G.A.W., Cameron, C.H. (1981): J. Immunol. Methods 40, 109.

    Article  Google Scholar 

  • Sansubrino, A., Mascini, M. (1994): Development of an optical fibre sensor for ammonia, urea, urease and IgG. Biosensors and Bioelectronics 9, 207–216.

    Article  Google Scholar 

  • Santandreu, M., Céspedes, F., Alegret, S., Martínez-Fàbregas, E. (1997): Amperometric immunosensors based on rigid conducting immunocomposites. Anal. Chem. 69, 2080–2085.

    Article  Google Scholar 

  • Shellum, C., Gübitz, G. (1989): Flow-injection immunoassays with acridinium ester-based chemiluminescence detection. Anal. Chim. Acta 227, 97–107.

    Article  Google Scholar 

  • Shulze, B., Schlösser, A., Middendorf, C., Schelp, C., Schelper, T., Schügerl, K., Noé, W., Hoffmann, H., Howald, M. (1994): New immunoanalysis systems for application in biotechnology, p 717. In: Proceedings of the 6th European Congress on Biotechn. (Alberghina, L., Frontali, L., Sensi, P., eds). Elsevier Science.

    Google Scholar 

  • Stöcklein, W., Schmid, R.D. (1990): Flow-injection immunoanalysis for the on-line monitoring of monoclonal antibodies. Anal. Chem. 234, 83–88.

    Google Scholar 

  • Wang, J. (1988): Electroanalytical technology in clinical chemistry and laboratory medicine. VCH Publishers, New York. Chapter 1.

    Google Scholar 

  • Wijesuriya, D., Breslin, K., Anderson, G., Shriver-Lake, L., Ligler, F.S. (1994): Regeneration of immobilized antibodies on fiber optic probes. Biosensors and Bioelectronics 9, 585–592.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 B. G. Teubner Verlagsgesellschaft Leipzig

About this chapter

Cite this chapter

Santandreu, M., Solé, S., Alegret, S., Martínez-Fàbregas, E. (1998). Immunosensor Systems with Renewable Sensing Surfaces. In: Hock, B., Barceló, D., Cammann, K., Hansen, PD., Turner, A.P.F. (eds) Biosensors for Environmental Diagnostics. Teubner-Reihe UMWELT. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-93454-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-93454-3_5

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-8154-3540-3

  • Online ISBN: 978-3-322-93454-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics