Advertisement

χ(3) — Effects in Polymer Waveguides

Chapter
  • 24 Downloads
Part of the TEUBNER-TEXTE zur Physik book series (TTZP)

Abstract

Kerr-like polymers can be used for all-optical switching in waveguides. χ(3) for the conjugated polymer MP-PPV has been determined (2.7 · 10−11 e.s.u.) by prism coupling into the nonlinear waveguide. As an example for all-optical switching in waveguides, the beam-scanner has been realized with a grating coupler in a nonlinear polymer waveguide made from azo-dye doped poly-methyl methacrylate (PMMA). Material trade-offs for opto-optical switching in waveguides are discussed and the currently known nonlinear polymers are evaluated due to their applicability.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AIT 91]
    Aitchison, J.S., Kean, A.H., Ironside, C.N., Villeneuve, A., Stegeman, G.I.: Nonlinear Directional Coupler in A10.18Ga0.82As Near Half the Band Gap. PAPER Pd 2–1 on OSA Conference on Nonlinear Guided Wave Phenomena in Cambridge, UK, Sept. 1991Google Scholar
  2. [ASS 90]
    Assanto, G., Stegeman, G.I.: Nonlinear all-optical beam scanner. J. Appl. Phys. 67 (1990) 1188CrossRefGoogle Scholar
  3. [BAR 92]
    Bartuch, U.; Bräuer, A.; Dannberg, P.; Hörhold, H.-H.; Raabe, D.: Measurement of high nonresonant third-order nonlinearity in MP-PPV waveguides. Int. J. Optoelectronics 7 (1992) 275Google Scholar
  4. [BRA 91]
    Bräuer, A., Bartuch, U., Dannberg, P., Zeisberger, M., Bauer, Th.: Linear and Nonlinear Effects in Polymer Optical Waveguides. SPIE Proc. 1559 (1991) 470–477CrossRefGoogle Scholar
  5. [BUB 89]
    Bubeck, C., Kaltbeitzel, A., Neher, D., Stenger-Smith, J.D.Google Scholar
  6. [BRA 91]
    Bräuer, A., Bartuch, U., Dannberg, P., Zeisberger, M., Bauer, Th.: Linear and Nonlinear Effects in Polymer Optical Waveguides. SPIE Proc. 1559 (1991) 470–477CrossRefGoogle Scholar
  7. [MIZ 89]
    Mizrahi, V., DeLong, K.W., Stegeman, G.I., Saifi, M.A., Andrejco, M.J.: Two-photon absorption as a limitation to all-optical switching. Opt. Lett. 14 (1989) 1140Google Scholar
  8. [BUB 89]
    Bubeck, C., Kaltbeitzel, A., Neher, D., Stenger-Smith, J.D., Wegner, G., Wolf, A.: Nonlinear Optical Properties of Thin Films of Polymers with a One-Dimensional Conjugated Electron System. In: H. Kuzmany, M. Mehring, S. Roth (ed.): Electronic Properties of Conjugated Polymers III, Springer Series in Solid-State Sci. 91 (1989) 214Google Scholar
  9. [CAR 83]
    Carter, G.M., Chen, Y.J., Tripathy, S.K.: Intensity-dependent index of refraction in multilayers of polydiacetylene. Appl. Phys. Lett. 43 (1983) 891CrossRefGoogle Scholar
  10. [FLY 87]
    Flytzanis, C. (1987) in: D.S. Chemla, J. Zyss (ed.): Nonlinear Optical Properties of Organic Molecules and Crystals, Vol.2, Academic Press, 121CrossRefGoogle Scholar
  11. [GÖR 90]
    Göring, R., Rasch, A., Karthe, W.: Quantitative Investigations of Photorefractive Effect in LiNbO3 Channel Waveguides. SPIE, 1274 (1990), 19Google Scholar
  12. [HEE 86]
    Heeger, A.J., Moses, D., Sinclair, M.: Semiconducting Polymers: Fast Response Non-Linear Optical Materials. Synthetic Metals 15 (1986) 95–104CrossRefGoogle Scholar
  13. [HO 86]
    Ho, P.P., Yang, N.L., Jimbo, T., Wang, Q.Z., Alfano, R.R.: Ultrafast Resonant Optical Kerr Effect in 4-Butoxycarbonylmethylurethane Polydiacetylene. J. Opt. Soc. Am. B4 (1987) 1025.Google Scholar
  14. [MAN 91]
    Mann, M., Trutschel, U., Lederer, F., Wächter, Ch., Leine, L.: Nonlinear Leaky Waveguide Modulator. J. Opt. Soc. Am. B8 (1991). 1612Google Scholar
  15. [MAR 91]
    Marques, M.B., Assanto, G., Stegeman, G.I., Möhlmann,G.R., Erdhuisen, E.W.P., Horsthuis, W.H.G.: Large, nonresonant, intensity dependent refractive index ofGoogle Scholar
  16. [NEH 89]
    Neher, D., Kaltbeitzel, A., Wolf, A., Bubeck, C., Wegner, G.: Nonlinear Optical Properties of Ultrathin Polymer Films. In:J.L. Bredas, R.R. Chance (ed): Conjugated Polymeric Materials: Opportunities in Electronics, Opto-Electronics and Molecular Electronics, NATO ASI Series E 182, Kluwer Acad. Publ., Dordrecht (1990) 387Google Scholar
  17. [SHE 91]
    Sheik-Bahae, M., Hutchings, D.C., Hagan, D.J., Van Stryland, E.W.: Dispersion of Bound Electronic Nonlinear Refraction in Solids, IEEE J. Quantum Electronics 27 (1991) 1296CrossRefGoogle Scholar
  18. [SIN 88]
    Sinclair, M., McBranch, D., Moses, D., Heeger, A.J.: Time-resolved waveguide modulation of a conjugated polymer. Appl. Phys. Lett. 53 (1988) 2374CrossRefGoogle Scholar
  19. [THA 90]
    Thakur, M., Krol, D.M.: Demonstration of all-optical phase modulation in polydiacetylene waveguides. Appl. Phys. Lett. 56 (1990) 1213CrossRefGoogle Scholar
  20. [TOW 88]
    Townsend, P.D., Baker, G.L., Schiotter, N.E., Klausner, C.F., Etemad, S.: Waveguiding in spun films of soluble polydiacetylenes. Appl. Phys. Lett. 53 (1988) 1782CrossRefGoogle Scholar
  21. [YAN 88]
    Yang, L. Wang, Q.Z., Ho, P.P., Dorsinvolle, R., Alfano, R.R., Zou, W.K., Yang, N.L.: Ultrafast time response of optical nonlinearity in polysilane polymers. Appl. Phys. Lett. 53 (1988) 1245CrossRefGoogle Scholar

Copyright information

© B. G. Teubner Verlagsgesellschaft Leipzig 1993

Authors and Affiliations

  1. 1.Institute of Applied PhysicsFriedrich-Schiller-University JenaGermany
  2. 2.Institute for Physical High TechJenaGermany

Personalised recommendations