Advertisement

Esterification of Polymers with Acid Chloride Groups — A New Route to Polymethacrylates with Nonlinear Optically Active Side Groups

Chapter
Part of the TEUBNER-TEXTE zur Physik book series (TTZP)

Abstract

Polymethacrylates with pendant donor-acceptor substituted azobenzene groups have been investigated by several research groups and show excellent performance in nonlinear optical (NLO) applications. The usual method for the synthesis of these polymers is the free radical copolymerization of the corresponding methacrylates with NLO-active side groups and methyl methacrylate (MMA). However, the NLO-chromophores often contain a number of functional groups, e.g. nitro- or azo groups, which may act as inhibitors or retarders in a free radical polymerization. So in some cases the yields are not quantitative and the molecular weights are quite low.

The polymeranalogous esterification of poly(methacryloyl chloride) or copolymers of methacryloyl chloride (MACI) and MMA is an alternative route to polymethacrylates with NLO-active side groups. In a first step, reactive prepolymers are prepared by free radical copolymerization of MACI and MMA. These polymers are subsequently esterified by NLO-active side groups with a hydroxy-terminated spacer group.

Well defined, high molecular weight polymethacrylates with high dye contents can be prepared by that procedure. The polymers have electro-optical coefficients up to 19 pm/V (1500 nm) after poling. The novel method also provides easy access to copolymers with both NLO-active azobenzene and photocrosslinkable cinnamoyl groups.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1).
    P.N. Prasad, D.J. Williams, Introduction to nonlinear optical effects in molecules and polymers, J. Wiley and Sons, New York 1991Google Scholar
  2. 2).
    S.R. Marder, J.E. Sohn, G.D. Stucky (Eds.), ’Materials for nonlinear optics: Chemical perspectives’ ACS Symposium Series, Washington 1991CrossRefGoogle Scholar
  3. 3).
    D.S. Chemla, J. Zyss (Eds.), ’Nonlinear optical properties of organic molecules and crystals’, Academic Press, New York 1987Google Scholar
  4. 4).
    G.R. Meredith, J.G. van Dusen, D.J. Williams, Macromolecules 15, 1385 (1982)CrossRefGoogle Scholar
  5. 5).
    D. R. Robello, J. Polym. Sci., Polym. Chem. Ed. 28, 1 (1990)CrossRefGoogle Scholar
  6. 6).
    R.N. De Martino, E.W. Choe, G. Khanarian, D. Haas, T. Leslie, G. Nelson, J. Stamatoff, D. Stuetz, C.C. Teng, H.N. Yoon in P.R. Prasad, D.R. Ulrich (Eds.) ’Nonlinear optical and electroactive polymers’, p. 169, Plenum Press 1988CrossRefGoogle Scholar
  7. 7).
    G.R. Möhlmann, Synthetic Metals 37, 207 (1990)CrossRefGoogle Scholar
  8. 8).
    W. Köhler, D.R. Robello, C. S. Willand, D.J. Williams, Macromolecules 24, 4589 (1991)CrossRefGoogle Scholar
  9. 9).
    M. Amano, T. Kaino, Electron. Lett. 26, 981 (1990)CrossRefGoogle Scholar
  10. 10).
    D. Jungbauer, I. Teraoka, D.Y. Yoon, B. Reck, J.D. Swalen, R. Twieg, C.G. Willson, J. Appt Phys. 69, 8011 (1991)CrossRefGoogle Scholar
  11. 11).
    M.A. Mortazavi, A. Knoesen, S.T. Kowel, B.G. Higgins, A. Dienes, J. Opt. Soc. Am. B, 6, 733 (1989)CrossRefGoogle Scholar
  12. 12).
    H.L. Hampsh, J. Yang, G.K. Wong, J.M. Torkelson, Macromolecules 21, 526 (1988)CrossRefGoogle Scholar
  13. 13).
    H.L. Hampsh, J. Yang, G.K. Wong, J.M. Torkelson, Polym. Commun. 30, 40 (1989)CrossRefGoogle Scholar
  14. 14).
    G.R. Möhimann, W.H. G. Horsthuis, A. Mc. Donach, M. J. Copeland, C. Duchet, P. Fabre, M.B. J. Diemeer, E.S. Trommel, F.M. M. Suyten, E. van Tomme, B. Baquers, P. van Daele, Proc. SPIE 1337, ’Nonlinear optical properties of organic materials H’, p. 215 (1990)Google Scholar
  15. 15).
    K.D. Singer, M.G. Kuzyk, W.R. Holland, J.E. Sohn, S.J. Lalama, R.B. Comizzoli, H.E. Katz, M.L. Schilling, AppL Phys. Letters 53, 1800 (1988)CrossRefGoogle Scholar
  16. 16).
    M. Eich, A. Sen, H. Looser, G. Bjorklund, J.D. Swalen, R. Twieg, D.Y. Yoon, J. Appt. Phys. 66, 2559 (1989)CrossRefGoogle Scholar
  17. 17).
    M. Eich, B. Reck, D.Y. Yoon, C.G. Willson, G.C. Bjorklund, J. Appt. Phys. 66, 3241 (1989)CrossRefGoogle Scholar
  18. 18).
    D. Jungbauer, B. Reck, R. Twieg, D.Y. Yoon, C.G. Willson, J.D. Swalen, Appl. Phys. Letters 56, 2610 (1990)CrossRefGoogle Scholar
  19. 19.
    G. C. Bjorklund, S. Ducharme, W. Fleming, D. Jungbauer, W. E. Moerner, J.D. Swalen, R.J. Twieg, C.G. Willson, D.Y. Yoon in ’Materials for Nonlinear Optics’, ACS Symposium Series 455 (1991)Google Scholar
  20. 20).
    B.K. Mandat, J. Kumar, J. C. Huang, S. Tripathy, Makromol Chem., Rapid Commun. 12, 63 (1991)CrossRefGoogle Scholar
  21. 21).
    B.K. Mandat, Y.M. Chen, J.Y. Lee, J. Kumar, S. Tripathy, Appl. Phys. Letters 58, 2459 (1991)CrossRefGoogle Scholar
  22. 22).
    B. K. Mandat, J. Y. Lee, X. F. Zhu, F. Xiao, Y. M. Chen, E. Prakeenavincha, J. Kumar, S. Tripathy, Synth. Metals 43, 3143 (1991)CrossRefGoogle Scholar
  23. 23).
    D. Braun, G. Arcache, R.J. Faust, W. Neumann, Makromol. Chem. 114, 51 (1968)CrossRefGoogle Scholar
  24. 24).
    D. Braun, G. Arcache, Makromol. Chem. 148, 119 (1971)CrossRefGoogle Scholar
  25. 25).
    O.F. Olaj, J.W. Breitenbach, I. Hofreiter, Makromol. Chem. 91, 264 (1966)CrossRefGoogle Scholar
  26. 26).
    J. Brandrup, E.H. Immergut (Eds.), ’Polymer Handbook’, 3rd Ed., J. Wiley and Sons 1989Google Scholar
  27. 27).
    C.S. Marvel, C.L. Levesque, J. Am. Chem. Soc. 61, 3244 (1939)CrossRefGoogle Scholar
  28. 28).
    M. Vrancken, G. Smets, J. Polym. Sci. 14, 521 (1954)CrossRefGoogle Scholar
  29. 29).
    S. Boyer, A. Rondeau, Bull. Soc. Chim. Fr. 25, 240 (1958)Google Scholar
  30. 30).
    R. C. Schulz, P. Elzer, W. Kern, Makromol. Chem. 42, 189 (1960)CrossRefGoogle Scholar
  31. 31).
    S. Rondeau, G. Smets, M.C. De Wilde -Delvaux, J. Polym. Sci. 24, 261 (1957)CrossRefGoogle Scholar
  32. 32).
    P.E. Blatz, J. Polym. Sci. 58, 755 (1962)CrossRefGoogle Scholar
  33. 33).
    C. M. Paleos, S. E. Filippakis, G. Margomenou - Leonidopoulou, J. Polym. Sci., Polym. Chem. Ed. 19, 1427 (1981)CrossRefGoogle Scholar
  34. 34).
    C. M. Paleos, G. Margomenou - Leonidopoulou, S. E. Filippakis, A. Malliaris, P. Dais, J. Polym. Sci., Polym. Chem. Ed. 20, 2267 (1982)CrossRefGoogle Scholar
  35. 35).
    H. Kamogawa, J. Polym. Sci. Al 7, 2458 (1969)CrossRefGoogle Scholar
  36. 36).
    I. Yahagi, H. Watanabe, K. Sanui, N. Ogata, J. Polym. Sci., Polym. Chem. Ed 25, 727 (1987)CrossRefGoogle Scholar
  37. 37).
    N. Ogata, K. Sanui, H. Watanabe, I. Yahagi, J. Polym. Sci., Letters Ed 23, 349 (1985)CrossRefGoogle Scholar
  38. 38).
    P. Strohriegl, Mol. Cryst. Liq. Cryst. 183, 261 (1989)Google Scholar
  39. 39).
    St. Polowinski, Acta Polymerica 35, 193 (1984)CrossRefGoogle Scholar
  40. 40).
    A. Reiser, “Photoactive Polymers J. Wiley and Sons, New York 1989Google Scholar
  41. 41).
    H. Müller, O. Nuyken, P. Strohriegl, Makromol. Chem., Rapid Commun. 13, 125 (1992)CrossRefGoogle Scholar
  42. 42).
    H. Müller, I. Müller, O. Nuyken, P. Strohriegl, Makromol. Chem., Rapid Commun., 1992, in pressGoogle Scholar

Copyright information

© B. G. Teubner Verlagsgesellschaft Leipzig 1993

Authors and Affiliations

  1. 1.Lehrstuhl Makromolekulare Chemie I und Bayreuther Institut für Makromolekülforschung (BIMF)Universität BayreuthBayreuthGermany

Personalised recommendations