Evolution of Guided Wave Fields in Rib ARROW-Structures

Part of the TEUBNER-TEXTE zur Physik book series (TTZP)


Novel waveguiding schemes basing on resonance effects like the Bragg-reflection waveguide and the Anti-Resonant-Reflecting Optical Waveguide (ARROW) have attracted an increasing interest within the last few years. This is due mainly to the fact, that some drawbacks are inherent in the conventional waveguiding concept. This concerns for instance the diameter mismatch of fiber-waveguide interconnects, the restriction to evanescent coupling, and the requirements for field-induced nonlinear refractive index changes to evoke nonlinear device characteristics. The first items require considerable technological efforts, whereas the latter one restricts the class of materials that can be used remarkably.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [LEN 90]
    Lenz,G.;Salzman,J.: Bragg Reflection Waveguide Composite structures. IEEE JQE 26 (1990), 519–531CrossRefGoogle Scholar
  2. [DUG 86]
    Duguay,M.A.;Kokubun,Y.;Koch,T.L: Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures. Appl.Phys.Lett. 49 (1986), 13–15CrossRefGoogle Scholar
  3. [BAB 88]
    Baba,T.;Kokubun,Y.;Sakaki,T.;Iga,K.: Loss reduction of an ARROW waveguide in shorter wavelength and its stack configuration. IEEE J.Lightw.Techn.LT-6(1988), 1440–45Google Scholar
  4. [LED 92]
    Lederer, F.; et al.: Linear mode beating and nonlinear mode coupling in resonant optical waveguides; see this volumeGoogle Scholar
  5. [WÄC 87]
    Wächter,C.;Hehl,K.: General Treatment of Slab Waveguides Including Lossy Materials and Arbitrary Refractive Index Profiles. phys.stat.sol(a) 102 (1987), 835–842CrossRefGoogle Scholar
  6. [FEI 80]
    Feit,M.D.;Fleck,J.A.jr.: Mode properties and dispersion for two optical fiber index profiles by the propagating beam method. Appl.Optics 19 (1980), 3140–3150CrossRefGoogle Scholar
  7. [SHE 91]
    Sheik-Bahae,M. et al.: Dispersion of Bound Electronic Nonlinear 344 Refraction in Solids. IEEE JOE 27 (1991), 1296–1309CrossRefGoogle Scholar
  8. [STE 90]
    Stegeman,G.I.;Wright,E.M.: All-optical waveguide switching Opt.and Quantum Electronics 22 (1990), 95–122CrossRefGoogle Scholar
  9. [SPL 91]
    Spiett,A.;Majd,M.;Petennann,K.: A novel Beam Propagation Method for Large Refractive Index Steps and Large Propagation Distances. IEEE Phot.Techn.Lett. 3 (1991)Google Scholar
  10. [MCI 90]
    Mcllroy,P.W.A.;Stern,M.S.;Kendail,P.C.: Spectral Index Method for Polarized Modes in Semiconductor Rib Waveguides. Journ.Lightw.Techn. 8 (1990), 113–117CrossRefGoogle Scholar

Copyright information

© B. G. Teubner Verlagsgesellschaft Leipzig 1993

Authors and Affiliations

  1. 1.Phys-Astr.Fak., Inst.f.Festkörpertheorie u.Theor.OptikFSU JenaJenaGermany
  2. 2.Univ. OsnabrückOsnabrückGermany
  3. 3.Department of Pure and Appl.PhysicsUniv.of SalfordSalfordUK
  4. 4.Electro-Optics Tecnology CenterTufts UniversityMedfordUSA

Personalised recommendations