Skip to main content

Part of the book series: TEUBNER-TEXTE zur Physik ((TTZP))

  • 40 Accesses

Abstract

Due to its almost complete freedom in lateral structuring, to the large choice of materials, and to the cheap mass production feature, LIGA technology offers new possibilities to realise photonic microsystems, either integrated or microoptical. In particular, advantages can be expected with respect to systems combining optically nonlinear with linear materials and concerning flux and flux density of the optical energy flow. It is found that the optical Kerr coefficient n2 of an interesting nonlinear material must exceed a lower limit, i.e., n2 > (λΔø/2πI0)α , in order to be useful for photonic microsystems. Herein, X is the wavelength, Δø/2π the phase shift caused by the nonlinear part of the microsystem, I0 the energy flux density of the incident light, and a the absorption coefficient of the nonlinear material. Bubeck and coworkers have given relationships between a and n2 for a variety of organic materials. In case of a recently described phthalocyaninatoruthenium complex the optical Kerr coefficient and the 3rd order susceptibility should satisfy n2 > 4·10−14 m2/W and x(3) > 4·10−8 esu, respectively, at λ = 680 nm, Δø/2π = 0.01, and I0 = 100 MW/cm2 . This material comes close to these requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Anderer, KfK 4702, Kernforschungszentrum Karlsruhe, 1990.

    Google Scholar 

  2. E.W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Münchmeyer, Microelectronic Engineering 4(1986)35.

    Article  Google Scholar 

  3. C. Bubeck et al., . Makromol. Chem., Makromol. Symp. 37(1990)239.

    Article  Google Scholar 

  4. C. Bubeck et al., Chem. Phys. 154(1991)343.

    Article  Google Scholar 

  5. P.N. Butcher, D. Cotter, The Elements of Nonlinear Optics, Cambridge University Press, 1990, pp. 306.

    Book  Google Scholar 

  6. E. Desurvire, Scientific American, Jan. 1992, pp. 96.

    Google Scholar 

  7. D.F. Eaton, Science 253(1991)281.

    Article  Google Scholar 

  8. W. Ehrfeld, D. Münchmeyer, Nucl. Inst. and Meth. A303(1991)523

    Google Scholar 

  9. S. Etemad et al., in “Organic Molecules for Nonlinear Optics and Photonics”, pp. 489, J. Messier et al., eds,Kluwer 1991.

    Google Scholar 

  10. S.R. Friberg et al., Opt. Lett. 13(1988)904.

    Article  Google Scholar 

  11. H.M. Gibbs, Optical Bistability: Controlling Light with Light, Academic Press, Orlando, 1985, pp. 375.

    Google Scholar 

  12. A. Grund et al., J. Phys. Chem., 1992, in press.

    Google Scholar 

  13. P. Hagmann, W. Ehrfeld, Intern. Polymer Processing IV(1989)3, pp. 188.

    Google Scholar 

  14. compare, e.g., D. Jäger, Laser und Optoelektronik 1(1988)46; H.-J. Eichler et al., ibid. pp. 59.

    Google Scholar 

  15. A. Kaltbeitzel et al., in “Electronic Properties of Conjugated Polymers III”, Springer Ser. in Sol. St. Sc. Vol. 91, pp. 220, H. Kuzmany et al., eds., Springer 1989.

    Google Scholar 

  16. N. Keil, these proceedings.

    Google Scholar 

  17. K. Knop, Phys. Bl. 47(1991)901.

    Article  Google Scholar 

  18. F. Mitschke, Phys. Blätter 46(1990)463.

    Article  Google Scholar 

  19. J. Mohr, J. Göttert, C. Müller, P. Bley, KfK-Nachrichten 23(23)(1991)93.

    Google Scholar 

  20. L.F. Mollenauer, J.P. Gordon, S.G. Evangelides, Laser Focus World 27(1991)159.

    Google Scholar 

  21. D. Neher et al., Synthetic Metals 37(1990)249.

    Google Scholar 

  22. P.N. Prasad, D.J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers, John Wiley, Sons, Inc., New York, 1991

    Google Scholar 

  23. S. Schrader et al., Synth. Met. 41–43(1991)3223.

    Google Scholar 

  24. H. Schmidt, M. Popall, SPIE Vol. 1328(1990)249.

    Article  Google Scholar 

  25. J. Stamatoff et al., Die Angew. Makromol. Chemie 183(1990)151.

    Google Scholar 

  26. B. Strebel, these proceedings.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 B. G. Teubner Verlagsgesellschaft Leipzig

About this chapter

Cite this chapter

Moser, H.O., Ehrfeld, W., Bauer, HD., Kistenmacher, P., Schift, H. (1993). Photonic Microsystems from LIGA Technology. In: Ehrfeld, W., Wegner, G., Karthe, W., Bauer, HD., Moser, H.O. (eds) Integrated Optics and Micro-Optics with Polymers. TEUBNER-TEXTE zur Physik. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-93430-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-93430-7_18

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-322-93431-4

  • Online ISBN: 978-3-322-93430-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics