Advertisement

Fabrication of Micro-Optic Elements by UV-initiated Polymerization

Chapter
Part of the TEUBNER-TEXTE zur Physik book series (TTZP)

Abstract

UV-Initiated Polymerization (UVIP) is a method for fabrication of diffractive and refractive optical elements e.g. lenses, prisms and other phase-only structures. Flexible function and design is possible. The surface relief structures are realized by UV-initiated polymerization. This process consists of an UV-sensitized PMMA-resist (PolyMethylMeth-Acrylate), which is spin coated and exposed at a wavelength of 365nm. Afterwards the resist is developed in MMA vapour (monomer of PMMA). Due to additional polymerization the exposed regions swell. Due to the linear response of the resist accurate control of the surface profile is possible by lithographic means.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BAG 00]
    G. Bagordo, K.-H. Brenner, T.M. Merklein, “Realization of microoptic elements by UV-initiated polymerization”, to be pubi. in Appl. Opt.Google Scholar
  2. [BRE 00]
    K.-H. Brenner, C. Doubrava, T.M. Merklein, “Fabrication of microoptic components by thermal imprinting”, to be published in Appl. Opt.Google Scholar
  3. [BRE 86]
    K.-H. Brenner, A. Huang, N. Streibl, “Digital optical computing with symbolic substitution,” Appl. Opt. 25 (1986) 3054.CrossRefGoogle Scholar
  4. [BRE 86]
    K. H. Brenner, “New implementation of symbolic substitution logic”, Appl. Opt. 25 (1986) 3061–3064.CrossRefGoogle Scholar
  5. [BRE 88]
    K.-H. Brenner, “A programmable optical processor based on symbolic substitution,” Appl. Opt. 27 (1988) 1687.CrossRefGoogle Scholar
  6. [BRE 88]
    K.-H. Brenner, “Digital optical computing”, Appl. Phys. B46 (1988) 111–120.CrossRefGoogle Scholar
  7. [BRE 89]
    K.-H. Brenner, A.W. Lohmann, T.M. Merklein, “Symbolic substitution implemented by spatial filtering logic”, Opt. Eng. 28 (1989) 390.CrossRefGoogle Scholar
  8. [BRE 92]
    K.-H. Brenner, T.M. Merklein, “Implementation of an optical crossbar network based on directional switches”, Appl. Opt. 31 (1992) accepted.Google Scholar
  9. [CES 89]
    L. Cescato, E. Gluch, M. Hei-Ptmeier, U. Krackhardt, T.M. Merklein, S. Sinzinger, N. Streibl, J. Thomas, “Computer Generated Optical Components in Photoresist”, Proc. “Symposium on optics in computing”, Toulouse, France, 17 /18 Oct. 1989.Google Scholar
  10. [DAM 70]
    H. Dammann, “Blazed synthetic phase-only holograms”, Optik 31 (1970) 95–104.Google Scholar
  11. [ECK 89]
    W. Eckert, G. Lohman, T.M. Merklein, K. Zürl, K.-H. Brenner, “Optoelectronic implementations of symbolic substitution”, Proc. “Symposium on optics in computing”, Toulouse, France, 17 /18 Oct. 1989.Google Scholar
  12. [FRA 84]
    H. Franke, “Optical recording of refractive-index patterns in doped poly-(Methyl Metacrylate) Films”, Appl. Opt. 23 (1984) 2729–2733.CrossRefGoogle Scholar
  13. [HAR 90]
    K. Hara, K. Kojima, K. Mitsunage, K. Kyuma, “AIGaAs/GaAs pnpn differential optical switch operable with 400 17 optical input energy”, Appl. Phys. Lett. 57 (1990) 1075–1077.CrossRefGoogle Scholar
  14. [HUR 82]
    Hurtley, M.C., “Diffraction gratings. Techniques of Physics”, Academic Press (1982) London.Google Scholar
  15. [JAH 90]
    J. Jahns, W. Däschner, “Optical cyclic shifter using diffractive lenslet arrays”, Opt. Comm. 79 (1990) 407–410.CrossRefGoogle Scholar
  16. [JAH 92]
    J. Jahns, K.-H. Brenner, W. Däschner, C. Doubrava, T. M. Merklein, “Replication of Diffractive Microoptical Elements Using a PMMA Molding Technique”, OPTIK 89 (1992) 98–100.Google Scholar
  17. [JOH 88]
    K.M. Johnson, M.R. Surette, J. Shamir, “Optical interconnection network using polarization-based ferroelectric liquid crystal gates”, Appl. Opt. 27 (1988) 1727.CrossRefGoogle Scholar
  18. [LOH 86]
    A.W. Lohmann, “What classical optics can do for the digital optical computer”, Appl. Opt. 25 (1986) 1543.CrossRefGoogle Scholar
  19. [LOH 89]
    A.W. Lohmann, “Scaling laws for lens systems”, Appl. Opt. 28 (1989) 4996.CrossRefGoogle Scholar
  20. [MER 89]
    T.M. Merklein, W. Stork, H. Yajima, “ An optical full adder” Appl. Opt. 28 (1989) 4313.CrossRefGoogle Scholar
  21. [OGU 90]
    I. Ogura, Y. Tashiro, S. Kawai, K. Yamada, M. Sugimoto, K. Kubota, K. Kasahara, “ Reconfigurable optical interconnection using a two-dimensional vertical to surface transmission electrophotonic device array”, Appl. Phys. Lett. 57 (1990) 540–542.CrossRefGoogle Scholar
  22. [SHI 87]
    T. Shiono, K. Setsune, O. Yamazaki, K. Wasa, “Rectangular-apertured micro-Fresnel lens arrays fabricated by electron-beam lithography”, Appl. Opt. 26 (1987) 587–591.CrossRefGoogle Scholar
  23. [SMI 73]
    H.I. Smith, “X-Ray lithography: A complementary technique to electron beam lithography”, J. Vac. Sci. [SMI 82]P.W. Smith, “On the physical limits of digital optical switching and logic elements”, The Bell System Technical Journal 61 (1982) 1975–1993. Technol. 10 (1973) 913.Google Scholar
  24. [SWA 89]
    G.J. Swanson, W.B. Veldkamp, “Diffractive optical elements for use in infrared systems”, Opt. Eng. 28 (1989) 605–608.Google Scholar
  25. [VIE 75]
    R. Vieweg, F. Esser, “Kunststoff-Handbuch Band 9 ‘Polymethacrylate’”, Carl Hanser Verlag (1975) München.Google Scholar
  26. [WAL 90]
    S.J. Walker, J. Jahns, “Array generation with multilevel phase gratings”, J. Opt. Soc. Am. A7 (1990) 1509–1513.CrossRefGoogle Scholar
  27. [WOL 91]
    B. Wolf, N. Fabricius, W. Foss, A. Dorsel, “Ion exchanged waveguides in glass: simulation and experiments”, Proc. SPIE, Hague, Netherlands, 1506 (1991) 40–51.CrossRefGoogle Scholar

Copyright information

© B. G. Teubner Verlagsgesellschaft Leipzig 1993

Authors and Affiliations

  1. 1.Physikalisches Institut der UniversitätErlangenFed. Rep of Germany

Personalised recommendations