Skip to main content

Fabrication of Micro-Optic Elements by UV-initiated Polymerization

  • Chapter
Integrated Optics and Micro-Optics with Polymers

Part of the book series: TEUBNER-TEXTE zur Physik ((TTZP))

Abstract

UV-Initiated Polymerization (UVIP) is a method for fabrication of diffractive and refractive optical elements e.g. lenses, prisms and other phase-only structures. Flexible function and design is possible. The surface relief structures are realized by UV-initiated polymerization. This process consists of an UV-sensitized PMMA-resist (PolyMethylMeth-Acrylate), which is spin coated and exposed at a wavelength of 365nm. Afterwards the resist is developed in MMA vapour (monomer of PMMA). Due to additional polymerization the exposed regions swell. Due to the linear response of the resist accurate control of the surface profile is possible by lithographic means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Bagordo, K.-H. Brenner, T.M. Merklein, “Realization of microoptic elements by UV-initiated polymerization”, to be pubi. in Appl. Opt.

    Google Scholar 

  2. K.-H. Brenner, C. Doubrava, T.M. Merklein, “Fabrication of microoptic components by thermal imprinting”, to be published in Appl. Opt.

    Google Scholar 

  3. K.-H. Brenner, A. Huang, N. Streibl, “Digital optical computing with symbolic substitution,” Appl. Opt. 25 (1986) 3054.

    Article  Google Scholar 

  4. K. H. Brenner, “New implementation of symbolic substitution logic”, Appl. Opt. 25 (1986) 3061–3064.

    Article  Google Scholar 

  5. K.-H. Brenner, “A programmable optical processor based on symbolic substitution,” Appl. Opt. 27 (1988) 1687.

    Article  Google Scholar 

  6. K.-H. Brenner, “Digital optical computing”, Appl. Phys. B46 (1988) 111–120.

    Article  Google Scholar 

  7. K.-H. Brenner, A.W. Lohmann, T.M. Merklein, “Symbolic substitution implemented by spatial filtering logic”, Opt. Eng. 28 (1989) 390.

    Article  Google Scholar 

  8. K.-H. Brenner, T.M. Merklein, “Implementation of an optical crossbar network based on directional switches”, Appl. Opt. 31 (1992) accepted.

    Google Scholar 

  9. L. Cescato, E. Gluch, M. Hei-Ptmeier, U. Krackhardt, T.M. Merklein, S. Sinzinger, N. Streibl, J. Thomas, “Computer Generated Optical Components in Photoresist”, Proc. “Symposium on optics in computing”, Toulouse, France, 17 /18 Oct. 1989.

    Google Scholar 

  10. H. Dammann, “Blazed synthetic phase-only holograms”, Optik 31 (1970) 95–104.

    Google Scholar 

  11. W. Eckert, G. Lohman, T.M. Merklein, K. Zürl, K.-H. Brenner, “Optoelectronic implementations of symbolic substitution”, Proc. “Symposium on optics in computing”, Toulouse, France, 17 /18 Oct. 1989.

    Google Scholar 

  12. H. Franke, “Optical recording of refractive-index patterns in doped poly-(Methyl Metacrylate) Films”, Appl. Opt. 23 (1984) 2729–2733.

    Article  Google Scholar 

  13. K. Hara, K. Kojima, K. Mitsunage, K. Kyuma, “AIGaAs/GaAs pnpn differential optical switch operable with 400 17 optical input energy”, Appl. Phys. Lett. 57 (1990) 1075–1077.

    Article  Google Scholar 

  14. Hurtley, M.C., “Diffraction gratings. Techniques of Physics”, Academic Press (1982) London.

    Google Scholar 

  15. J. Jahns, W. Däschner, “Optical cyclic shifter using diffractive lenslet arrays”, Opt. Comm. 79 (1990) 407–410.

    Article  Google Scholar 

  16. J. Jahns, K.-H. Brenner, W. Däschner, C. Doubrava, T. M. Merklein, “Replication of Diffractive Microoptical Elements Using a PMMA Molding Technique”, OPTIK 89 (1992) 98–100.

    Google Scholar 

  17. K.M. Johnson, M.R. Surette, J. Shamir, “Optical interconnection network using polarization-based ferroelectric liquid crystal gates”, Appl. Opt. 27 (1988) 1727.

    Article  Google Scholar 

  18. A.W. Lohmann, “What classical optics can do for the digital optical computer”, Appl. Opt. 25 (1986) 1543.

    Article  Google Scholar 

  19. A.W. Lohmann, “Scaling laws for lens systems”, Appl. Opt. 28 (1989) 4996.

    Article  Google Scholar 

  20. T.M. Merklein, W. Stork, H. Yajima, “ An optical full adder” Appl. Opt. 28 (1989) 4313.

    Article  Google Scholar 

  21. I. Ogura, Y. Tashiro, S. Kawai, K. Yamada, M. Sugimoto, K. Kubota, K. Kasahara, “ Reconfigurable optical interconnection using a two-dimensional vertical to surface transmission electrophotonic device array”, Appl. Phys. Lett. 57 (1990) 540–542.

    Article  Google Scholar 

  22. T. Shiono, K. Setsune, O. Yamazaki, K. Wasa, “Rectangular-apertured micro-Fresnel lens arrays fabricated by electron-beam lithography”, Appl. Opt. 26 (1987) 587–591.

    Article  Google Scholar 

  23. H.I. Smith, “X-Ray lithography: A complementary technique to electron beam lithography”, J. Vac. Sci. [SMI 82]P.W. Smith, “On the physical limits of digital optical switching and logic elements”, The Bell System Technical Journal 61 (1982) 1975–1993. Technol. 10 (1973) 913.

    Google Scholar 

  24. G.J. Swanson, W.B. Veldkamp, “Diffractive optical elements for use in infrared systems”, Opt. Eng. 28 (1989) 605–608.

    Google Scholar 

  25. R. Vieweg, F. Esser, “Kunststoff-Handbuch Band 9 ‘Polymethacrylate’”, Carl Hanser Verlag (1975) München.

    Google Scholar 

  26. S.J. Walker, J. Jahns, “Array generation with multilevel phase gratings”, J. Opt. Soc. Am. A7 (1990) 1509–1513.

    Article  Google Scholar 

  27. B. Wolf, N. Fabricius, W. Foss, A. Dorsel, “Ion exchanged waveguides in glass: simulation and experiments”, Proc. SPIE, Hague, Netherlands, 1506 (1991) 40–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 B. G. Teubner Verlagsgesellschaft Leipzig

About this chapter

Cite this chapter

Bagordo, G., Brenner, KH., Merklein, T.M., Rohrbach, A. (1993). Fabrication of Micro-Optic Elements by UV-initiated Polymerization. In: Ehrfeld, W., Wegner, G., Karthe, W., Bauer, HD., Moser, H.O. (eds) Integrated Optics and Micro-Optics with Polymers. TEUBNER-TEXTE zur Physik. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-93430-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-93430-7_13

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-322-93431-4

  • Online ISBN: 978-3-322-93430-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics