Advertisement

Deep Proton Irradiation of PMMA for a 3D Integration of Micro-Optical Components

Chapter
  • 24 Downloads
Part of the TEUBNER-TEXTE zur Physik book series (TTZP)

Abstract

An integration of microoptical components to threedimensional systems is of interest for optical information processing as well as for optical interconnections. Polymethyl methacrylate (PMMA) is a suitable substrate material, because microprisms, beamsplitters and microlenses can be integrated monolithically in the same substrate by deep proton irradiation. The microcomponents can be combined to compact microoptical imaging systems which are easy to align. The fabrication method and the imaging properties of this system are discussed and applications are outlined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BRE 88]
    K.-H. Brenner, F.Sauer: “Diffractive-reflective optical interconnects”, Appl. Optics 27 [20], 4251–4254, 1988.Google Scholar
  2. [BRE 90]
    K.-H. Brenner, M. Frank, M. Kufner, S. Kufner: “Hf-Lithography for 3-D integration of optical circuits”, Appl. Optics 29 [26], 3723–3724, 1990.CrossRefGoogle Scholar
  3. [BRE 91]
    K.-H. Brenner: “Techniques for integrating 3D-optical systems”, Proc. SPIE 1544, 263–270, San Diego, 22–23 July 1991.Google Scholar
  4. [CAN 89]
    J.W. Cannt, V. Diadnik: Gimbal for aligning Laser and Lenslet arrays for coherent operation in an external cavity“, Appl. Optics 28 [9], 1602–1605, 1989.Google Scholar
  5. [FRA 91]
    M. Frank, M. Kufner, S. Kufner, M. Testorf: “Microlenses in polymethyl methacrylate with high relative aperture”, Appl. Optics, Vol 30, No. 19, 2666–2667, 1991.CrossRefGoogle Scholar
  6. [FRA 92a]
    M. Frank, M. Kufner, S. Kufner, J. Moisel, M. Testorf: “Microlenses in PMMA with high relative aperture: A parameter study”, submitted to Pure and Applied Optics.Google Scholar
  7. [FRA 92b]
    M. Frank, J. Göttert, M. Kufner, S. Kufner: “Untersuchungen zur tiefenlithographischen Strukturierung von PMMA”, KfK-IMT-Bericht 103 /21, 1992.Google Scholar
  8. [GHI 80]
    V. Ghica, W. Glashauser, “Verfahren zur spannungsfreien Entwicklung von bestrahlten Polymethacrylat-Schichten”, Offenlegungsschrift DE 3039110.Google Scholar
  9. [HEI 90]
    M. Heißmeier, U. Krackhardt, N. Streibl: “A Dammann-grating with diffraction orders of arbitray intensity etched in Al2O3”, Opt. Comm. 76, 103106, 1990.Google Scholar
  10. [HUT 90]
    M.C. Hutley: “Optical techniques for the generation of microlens arrays”, J. of Modern Optics 37 [2], 253–265, 1990.CrossRefGoogle Scholar
  11. [IGA 82]
    K.Iga, M. Oikawa, J. Banno, Y. Kokubun: “Stacked Planar Optics; an application of the planar microlens”, Appl. Optics 21, 3456–3460, 1982.CrossRefGoogle Scholar
  12. [IGA 84]
    K.Iga, Y. Kokubun, M. Oikawa: “Fundamentals of Microoptics”, Academic Press, Tokyo, 1984.Google Scholar
  13. [JAH 89]
    J. Jahns, A. Huang: “Planar integration of free-space optical components”, Appl. Optics 28 [9], 1602–1605, 1989.CrossRefGoogle Scholar
  14. [JEW 91]
    J. Jewell, J.P. Harbison, A. Scherer, Y.H. Lee and L.T. Florez: “Vertical-Cavity Surface-Emitting Lasers: Design, Growth, Fabrication, Characterization”, IEEE J. of Quantum Electronics, 27 [6], 1332–1346, 1991.CrossRefGoogle Scholar
  15. [LOH 88]
    A.W. Lohmann, W. Lukosz, J. Schwider, N. Streibl, J. Thomas: “Array illuminators for the optical computer”, Proc. SPIE 963, 37–44, Toulon, 1988.Google Scholar
  16. [NIS 89]
    H. Nishishara, M. Haruna, T. Suhara: “Optical integrated circuits”, McGraw-Hill, New York, 1989.Google Scholar
  17. [ZIE 85]
    J.F. Ziegler, J.P. Biersack, U. Littmark “The stopping of Ions in Solids”, Pergamon Press, New York, 1985.Google Scholar

Copyright information

© B. G. Teubner Verlagsgesellschaft Leipzig 1993

Authors and Affiliations

  1. 1.Physics InstituteUniversity of Erlangen-NurembergErlangenFederal Republic of Germany

Personalised recommendations