Advertisement

Neuronale Optimierungssysteme

  • Jürgen Heuer

Zusammenfassung

Eine der am stärksten untersuchten Anwendungsformen von KNN ist die Optimierung. In diesem Kapitel werden mehrere Verfahren vorgestellt. Neben den grundlegenden Strukturen nach Hopfield und Kohønen sind unter den beschriebenen Ansätzen auch Mischformen zwischen neuronaler und numerischer Optimierung zu finden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur des Kapitels

  1. [Aar89]
    E. Aarts, J. Korst: ‘Simulated Annealing and Boltzman Machines’;Google Scholar
  2. [Ari93]
    Ikuo Arizono, Shinji Hara, Hirdshi Ohta: ‘Neurons with an Im munological Rejective Function and Their Application to Scheduling Problems’;Google Scholar
  3. [Boe92]
    Maria Claudia S. Boeres, Valmir C. Barbosa: ‘A Faster Elastic-Net Algorithm for the Traveling Salesman Problem’;Google Scholar
  4. [Che90]
    Daniel L. Chester: ‘Why Two Hidden Layers are Better than One’;Google Scholar
  5. [Che93]
    Kwok-Wai Cheung, Tong Lee: ‘On the convergence of Neural Networks for Higher Order Programming’;Google Scholar
  6. [Che94]
    John Y. Cheung: ‘Scheduling’;Google Scholar
  7. [Chu92]
    Pong P. Chu: ‘A Neural Network for Solving Optimization Problems with Linear Equality Constraints’;Google Scholar
  8. [Cic93]
    A. Cichocki, R. Unbehauen: ‘Neural networks for opttmizatio n and signal processing’;Google Scholar
  9. [Dag93]
    Cihan H. Dagli, sinchai Sittisathanchai: ‘Genetic Neuro-Scheduler for Job Shop Scheduling’;Google Scholar
  10. [Due90]
    Gunter Dueck, Tobias Scheuer: ‘Threshold Accepting: A General Purpose Algorithm Appearing Superior to Simulated Annealing’;Google Scholar
  11. [Due93]
    Gunter Dueck, Tobias Scheuer, Hans-Martin Wallmeier: „ Toleranzschwelle und Sintflut: neue Ideen zur Optimierung“;Google Scholar
  12. [Due93a]
    Gunter Dueck: ‘New Optimization Heuristics. The Great Deluge Algorithm and the Record-to-Record-Travel’;Google Scholar
  13. [Dur87]
    Richard Durbin, D. Willshaw: ‘An analogue approach to the traveling salesman problem using an elastic net method’;Google Scholar
  14. [Dur89a]
    Richard Durbin, Richard Szeliski, Alan Yuille: ‘An Analysis of the Elastic Net Approach to the Travelling Salesman Problem’;Google Scholar
  15. [Foo88b]
    Yoon-Pin Simon Foo, Yoshiyasu Takefuji: ‘Stochastic Neural Networks for Solving Jop-Shop Scheduling: Part 1, Problem Representation’;Google Scholar
  16. [Foo88c]
    Yoon-Pin Simon Foo, Yoshiyasu Takefuji: ‘Stochastic Neural Networks for Solving Job-Shop Scheduling: Part 2, Architecture and Simulation’;Google Scholar
  17. [Gar79]
    M. R. Garey, D. S. Johnson: ‘Computers and Intractability’;Google Scholar
  18. [Gem84]
    S. Geman, D. Geman: ‘???’;Google Scholar
  19. [Gol89]
    D. E. Goldberg: ‘Genetic Algorithms in Search, Optimization and Machine Learning’;Google Scholar
  20. [Hay92]
    Paul V. Hayes, R. Timothy Rue, Samir I. Sayegh: ‘Fault Isolation in Units Under Test: A Neural Network Approach’;Google Scholar
  21. [Hec9l]
    Robert Hecht-Nielsen: ‘Neurocomputing’;Google Scholar
  22. [Hop84]
    John J. Hopfield: ‘Neurons with grades have collected computational properties like those of two-state neurons’;Google Scholar
  23. [Hop85]
    John J. Hopfield, D. W. Tank: ‘Neural Computing of Decisions in Optimization Problems’;Google Scholar
  24. [Hou92]
    Randy L. House, Giban H. Dagli: ‘An Approach to Three-Dimensional Packing Using Genetic Algorithms’;Google Scholar
  25. [Kin92]
    Werner Kinnebrock: „Neuronale Netze“;Google Scholar
  26. [Lar87]
    P. J. M. van Laarhoven, E. H. L. Aarts: ‘Simulated Annealing: Theory and Applications’;Google Scholar
  27. [Mas93]
    Timothy Masters: ‘Practical Neural Network Recipies in C++’;Google Scholar
  28. [Min86]
    Marvin Minsky: ‘The Society of Mind’;Google Scholar
  29. [Seg90]
    Enrique Carlos Segura, Bruno Cernushi Fías: ‘Self-learning Simulated Annealing’;Google Scholar
  30. [Sim90]
    P. D. Simic: ‘Statistical mechanics as the underlying theory of “elastic“ and “neural“ optimization’;Google Scholar
  31. [Spe90]
    Donald F. Specht: ‘Probabilistic Neural Networks’;Google Scholar
  32. [Sto92]
    J. V. Stone: ‘The Optimal Elastic Net: Finding Solutions to the Travelling Salesman Problem’;Google Scholar
  33. [Szu86]
    Harold Szu: ‘Fast simulated annealing’;Google Scholar
  34. [Szu90]
    Harold Szu: ‘Coloured Noise Ann ealing Benchmark by Exhaustive Solutions of TSP’;Google Scholar
  35. [Szu93]
    Harold Szu: ‘Lossless Divide & Conquer Principle for Massively Parallel Optimizations’;Google Scholar
  36. [Zha93a]
    Songhe Zhao, T. S. Dillon: ‘Parallel Distributed Implementation of the Shortest Path Algorithm’;Google Scholar

Copyright information

© Betriebswirtschaftlicher Verlag Dr. Th. Gabler GmbH, Wiesbaden 1997

Authors and Affiliations

  • Jürgen Heuer

There are no affiliations available

Personalised recommendations