Skip to main content

Abstract

Linear prediction modelling is used in a diverse area of applications such as data forecasting, speech recognition, low bit rate coding, model-based spectral analysis, interpolation, signal restoration etc. In statistical literature, linear prediction models are referred to as autoregressive (AR) processes. In this chapter we introduce the theory of linear prediction, and consider efficient methods for computation of the predictor coefficients. We study the forward, the backward and the lattice predictors, and consider various methods of formulation of the least squared error predictor coefficients. For the modelling of signals with a quasi-periodic structure, such as voiced speech, an extended linear predictor, that simultaneously utilises both the short and the long term correlation structures, is introduced. Finally the application of linear prediction in enhancement of noisy speech is considered. Further applications of linear prediction models, in this book, are in Chapter 11 on the interpolation of a sequence of lost samples, and in Chapters 12 and 13 on the detection and removal of impulsive noise and transient noise pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Akaike H.(1970), Statistical Predictor Identification, Annals of the Institute of Statistical Mathematics, Vol. 22, Pages 203–217.

    Article  MathSciNet  MATH  Google Scholar 

  • Akaike H. (1974), A New Look at Statistical Model Identification, IEEE Trans. on Automatic Control, Vol. AC-19, Pages 716–723, Dec.

    Article  MathSciNet  Google Scholar 

  • Anderson O.D. (1976), Time Series Analysis and Forecasting, The Box-Jenkins Approach, Butterworth, London.

    Google Scholar 

  • Ayre A.J. (1972), Probability and Evidence Columbia University Press.

    Google Scholar 

  • Box G.E.P, Jenkins G.M. (1976), Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco, California.

    MATH  Google Scholar 

  • Burg J.P., (1975) Maximum Entropy Spectral Analysis, P.h.D. thesis, Stanford University, Stanford, California.

    Google Scholar 

  • Durbin J. (1959), Efficient Estimation of Parameters in Moving Average Models, Biometrica, Vol. 46, Pages 306–317.

    MathSciNet  MATH  Google Scholar 

  • Durbin J.(1960), “The Fitting of Time Series Models”, Rev. Int. Stat. Inst., Vol. 28 Pages 233–244.

    Article  MATH  Google Scholar 

  • Fuller W.A. (1976), Introduction to Statistical Time Series, Wiley, New York.

    MATH  Google Scholar 

  • Hansen J. H., Clements M. A. (1987). “Iterative Speech Enhancement with Spectral Constrains”, IEEE Proc. Int. Conf. on Acoustics, Speech and Signal Processing ICASSP-87, Vol. 1, Pages 189–192, Dallas, April.

    Article  Google Scholar 

  • Hansen J. H., Clements M. A. (1988). “Constrained Iterative Speech Enhancement with Application to Automatic Speech Recognition”, IEEE Proc. Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP-88, Vol. 1, Pages 561–564, New York, April.

    Google Scholar 

  • Kobatake H., Inari J., Kakuta S. (1978), “Linear prediction Coding of Speech Signals in a High Ambient Noise Environment”, IEEE Proc. Int. Conf. on Acoustics, Speech and Signal Processing, Pages 472–475, April.

    Google Scholar 

  • Levinson N.(1947), “The Wiener RMS (Root Mean Square) Error Criterion in Filter Design and Prediction”, J. Math Phys., Vol. 25, Pages 261–278.

    MathSciNet  Google Scholar 

  • Lim J. S., Oppenheim A. V. (1978), “All-Pole Modelling of Degraded Speech”, IEEE Trans. Acoustics, Speech and Signal Processing, Vol. ASSP-26, No 3, pages 197–210, June.

    Article  Google Scholar 

  • Lim J. S., Oppenheim A. V. (1979), “Enhancement and Bandwidth Compression of Noisy Speech”, Proc. IEEE, No 67 Pages 1586–1604.

    Article  Google Scholar 

  • Makoul J.(1975), Linear Prediction: A Tutorial review. Proceedings of the IEEE Vol. 63, Pages 561–580.

    Article  Google Scholar 

  • Markel J.D., Gray A.H. (1976), Linear Prediction of Speech, Springer Verlag, New York.

    Book  MATH  Google Scholar 

  • Rabiner L.R., Schafer R.W. (1976), Digital Processing of Speech Signals Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Tong H. (1975), “Autoregressive Model Fitting with Noisy Data by Akaike’s Information Criterion”, IEEE Trans. Information Theory, Vol. IT-23, Pages 409–410.

    Google Scholar 

  • Stockham T.G, Cannon T.M, Ingebretsen R.B (1975), “Blind Deconvolution Through Digital Signal Processing”, IEEE Proc. Vol. 63, No. 4, Pages 678–692.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 John Wiley & Sons Ltd. and B.G. Teubner

About this chapter

Cite this chapter

Vaseghi, S.V. (1996). Linear Prediction Models. In: Advanced Signal Processing and Digital Noise Reduction. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-92773-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-92773-6_7

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-92774-3

  • Online ISBN: 978-3-322-92773-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics