Skip to main content

Abstract

Wiener theory, formulated by Norbert Wiener, forms the foundation of data-dependent linear least squared error filters. Wiener filters play a central role in a wide range of applications such as linear prediction, signal coding, echo cancellation, signal restoration, channel equalisation, system identification etc. The coefficients of a Wiener filter are calculated to minimise the average squared distance between the filter output and a desired signal. In its basic form, the Wiener theory assumes that the signals are stationary processes. However, if the filter coefficients are periodically recalculated, for every block of N samples, then the filter adapts to the average characteristics of the signals within the blocks and becomes block-adaptive. A block-adaptive filter can be used for signals that can be considered stationary over the duration of the block. In this chapter we study the theory of Wiener filters, and consider alternative methods of formulation of the Wiener filter problem. We consider the application of Wiener filters in channel equalisation, time-delay estimation, and additive noise suppression. A case study of the frequency response of a Wiener filter, for additive noise reduction, provides useful insight into the operation of the filter. We also deal with some implementation issues of Wiener filters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Akaike H. (1974), A New Look at Statistical Model Identification, IEEE Trans, on Automatic Control, AC-19 Pages 716–23, Dec.

    Google Scholar 

  • Alexander S.T. (1986), Adaptive Signal Processing Theory and Applications. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Anderson B.D., Moor J.B. (1979) Linear Optimal Control, Prentice-Hall, Englewood Cliffs, N. J.

    Google Scholar 

  • Bjorck A. (1967), Solving Linear Least Squares Problems by Gram-Schmidt Orthogonalisation, BIT, Vol. 7, Pages 1–21.

    Article  MathSciNet  Google Scholar 

  • Dorny C.N. (1975), A Vector Space Approach to Models and Optimisation, Wiley, New York.

    Google Scholar 

  • Durbin J. (1959), Efficient Estimation of Parameters in Moving Average Models, Biometrica Vol. 46, Pages 306–16.

    MathSciNet  MATH  Google Scholar 

  • Giordano A.A., Hsu F.M. (1985), Least Square Estimation with Applications to Digital Signal Processing, Wiley, New York.

    Google Scholar 

  • Givens W. (1958), Computation of Plane Unitary Rotations Transforming a General Matrix to Triangular Form, SIAM J. Appl. Math. Vol. 6, Pages 26–50.

    MathSciNet  MATH  Google Scholar 

  • Golub G.H., Reinsch (1970), Singular Value Decomposition and Least Squares Solutions, Numerical Mathematics, Vol. 14, Pages 403–20.

    Article  MathSciNet  MATH  Google Scholar 

  • Golub G.H., Van Loan C.F. (1983). Matrix Computations, Johns Hopkins University Press, Baltimore, MD.

    MATH  Google Scholar 

  • Golub G.H., Van Loan C.F. (1980). An Analysis of the Total Least Squares Problem, SIAM Journal of Numerical Analysis, Vol. 17, Pages 883–93.

    Article  MATH  Google Scholar 

  • Halmos P. R. (1974), Finite-Dimensional Vector Spaces. Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  • Haykin S. (1991), Adaptive Filter Theory, 2nd Edition, Prentice-Hall, Englewood Cliffs, N. J.

    MATH  Google Scholar 

  • Householder A.S. (1964), The Theory of Matrices in Numerical Analysis, Blaisdell, Waltham, Mass.

    MATH  Google Scholar 

  • Kailath T. (1974), A View of Three Decades of Linear Filtering Theory, IEEE Trans. Information Theory, Vol. IT-20, Pages 146–81.

    Article  MathSciNet  Google Scholar 

  • Kailath T. (1977), Linear Least Squares Estimation, Benchmark Papers in Electrical Engineering and Computer science, Dowden, Hutchinson &Ross.

    Google Scholar 

  • Kailath T. (1980), Linear Systems, Prentice-Hall, Englewood Cliffs, N. J.

    MATH  Google Scholar 

  • Klema V.C., Laub A. J. (1980), The Singular Value Decomposition: Its Computation and Some Applications, IEEE Trans. Automatic Control, Vol. AC-25, Pages 164–76.

    Article  MathSciNet  Google Scholar 

  • Kolmogrov A.N. (1939), Sur 1’ Interpolation et Extrapolation des Suites Stationaires, Comptes Rendus de l’Academie des Sciences, Vol. 208, Pages 2043–45.

    Google Scholar 

  • Lawson C.L., Hanson R.J. (1974), Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs, N. J.

    MATH  Google Scholar 

  • Orfanidis S. J. (1988), Optimum Signal Procesing: An introduction, 2nd Edition, Macmillan, New York.

    Google Scholar 

  • Scharf L.L. (1991), Statistical Signal Processing: Detection, Estimation, and Time Series Analysis, Addison Wesley, Reading, Mass.

    MATH  Google Scholar 

  • Strang G.(1976), Linear Algebra and Its Applications, 3rd ed., Harcourt Brace Jovanovich, San Diego, California.

    MATH  Google Scholar 

  • Wiener N. (1949), Extrapolation, Interpolation and Smoothing of Stationary Time Series, MIT Press Cambridge, Mass.

    MATH  Google Scholar 

  • Wilkinson J. H. (1965), The Algebraic Eigenvalue Problem, Oxford University Press, Oxford.

    Google Scholar 

  • Whittle P.W. (1983), Prediction and Regulation by Linear Least-Squares Methods, University of Minnesota Press, Minneapolis, Minnesota.

    Google Scholar 

  • Wold H., (1954), The Analysis of Stationary Time Series, 2nd ed. Almquist and Wicksell, Uppsala, Sweden.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 John Wiley & Sons Ltd. and B.G. Teubner

About this chapter

Cite this chapter

Vaseghi, S.V. (1996). Wiener Filters. In: Advanced Signal Processing and Digital Noise Reduction. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-92773-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-92773-6_5

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-92774-3

  • Online ISBN: 978-3-322-92773-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics