Skip to main content
  • 303 Accesses

Abstract

Blind deconvolution is the process of unravelling two unknown signals that have been convolved. An important application of blind deconvolution is blind equalisation for the restoration of a signal distorted in transmission through a communication channel. Blind equalisation/deconvolution has a wide range of applications, for example in digital telecommunications for removal of inter-symbol interference, in speech recognition for removal of the effects of microphones and channels, in deblurring of distorted images, in dereverberation of acoustic recordings, in seismic data analysis etc.)

In practice, blind equalisation is only feasible if some useful statistics of the channel input, and perhaps also of the channel itself, are available. The success of a blind equalisation method depends on how much is known about the statistics of the channel input, and how useful this knowledge is in the channel identification and equalisation process. This chapter begins with an introduction to the basics of deconvolution and channel equalisation. We study blind equalisation based on the channel input power spectrum, equalisation through model factorisation, Bayesian equalisation, nonlinear adaptive equalisation for digital communication channels, and equalisation of maximum phase channels using higher order statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Benveniste A., Goursat M., Ruget G. (1980), Robust Identification of a Nonminimum Phase System: Blind Adjustment of Linear Equaliser in Data Communications, IEEE Trans, Automatic Control, Vol AC-25, Pages 385–99.

    Article  MathSciNet  MATH  Google Scholar 

  • Bellini S. (1986), Bussgang Techniques for Blind Equalisation, IEEE GLOBECOM Conf. Rec., Pages 1634–40.

    Google Scholar 

  • Bellini S., Rocca F (1988), Near Optimal Blind Deconvolution, IEEE Proc. Int. Conf. Acoustics, Speech, and Signal Processing., ICASSP-88, Pages 2236–39.

    Google Scholar 

  • Belfiore C. A., Park J. H. (1979), Decision Feedback Equalisation, Proc. IEEE, Vol. 67, Pages 1143–56.

    Article  Google Scholar 

  • Cowan C. F. N., Gibson G. J., Siu S., (1989), Data Equalisation using Highly Non-linear Adaptive Architectures, SPIE, San Diego, California.

    Google Scholar 

  • Gersho A (1969), Adaptive Equalisation of Highly Dispersive Channels for Data Transmission, Bell System Technical Journal, Vol. 48, Pages 55–70.

    MATH  Google Scholar 

  • Godard, D. N. (1974), Channel Equalisation using a Kaliman Filter for Fast Data Transmission, IBM J. Res. Dev., Vol. 18, Pages 267–73.

    Article  MATH  Google Scholar 

  • Godard, D. N. (1980), Self-recovering Equalisation and Carrier Tracking in a Two-Dimensional Data Communication System, IEEE Trans. Comm., Vol. COM-28, Pages 1867–75.

    Article  Google Scholar 

  • Hanson B. A., Applebaum T. H. (1993), Subband or Cepstral Domain Filtering for Recognition of Lombard and Channel-Distorted Speech, IEEE Int. Conf. Acoustics, Speech and Signal Processing Vol. II, Pages 79–82.

    Google Scholar 

  • Hariharan S., Clark A. P. (1990), HF Channel Estimation using a Fast Transversal Filter Algorithm, IEEE Trans. Acoustics, Speech and Signal Processing, Vol. 38, Pages 1353–62.

    Article  Google Scholar 

  • Hatzinako S. D. (1990), Blind Equalisation Based on Polyspectra, Ph.D. Thesis, Northeastern University, Boston, Mass.

    Google Scholar 

  • Hermansky H, Morgan N (1992), Towards Handling the Acoustic Environment in Spoken Language Processing, Int. Conf. on Spoken Language Processing Tu.fPM.1.1, Pages 85–88.

    Google Scholar 

  • Lucky R. W. (1965), Automatic Equalisation of Digital Communications, Bell System technical Journal, Vol, 44, Pages 547–88.

    MathSciNet  Google Scholar 

  • Lucky R. W. (1965), Techniques for Adaptive Equalisation of Digital Communication Systems, Bell System Technical Journal, Vol. 45, Pages 255–86.

    MathSciNet  Google Scholar 

  • Mendel J. M. (1990), Maximum Likelihood Deconvolution: A Journey into Model Based Signal Processing, Springer-Verlag, New York.

    Book  Google Scholar 

  • Mendel J. M. (1991), Tutorial on Higher Order Statistics (Spectra) in Signal Processing and System Theory: Theoretical results and Some Applications, Proc. IEEE, Vol. 79, Pages 278–305.

    Article  Google Scholar 

  • Mokbel C, Monne J., Jouvet D. (1993), On-Line Adaptation of A Speech Recogniser to Variations in Telephone Line Conditions, Proc. 3rd European Conf. On Speech Communication and Technoplogy, EuroSpeech-93, Vol. 2, Pages 1247–50.

    Google Scholar 

  • Monsen P. (1971), Feedback Equalisation for Fading Dispersive Channels, IEEE Trans. Information Theory, Vol. IT-17, Pages 56–64.

    Article  MATH  Google Scholar 

  • Nikias C. L., Chiang H. H. (1991), Higher-Order Spectrum Estimation via Non-Causal Autoregressive Modeling and Deconvolution, IEEE Trans. Acoustics, Speech and Signal Processing Vol. ASSP-36, Pages 1911–13.

    Google Scholar 

  • Nowlan S. J., Hinton G. E. (1993), A Soft Decision-Directed Algorithm for Blind Equalisation IEEE Transactions on Communications, Vol. 41, No. 2, Pages 275–79.

    Google Scholar 

  • Pan R., Nikias C. L. (1988), Complex Cepstrum of Higher Order Cumulants and Nonminimum Phase identification, IEEE Trans. Acoustics, Speech and Signal Processing, Vol. ASSP-36, Pages 186–205.

    Google Scholar 

  • Picchi G., Prati G. (1987), Blind Equalisation and Carrier Recovery using a Stop-and-Go Decision-Directd Algorithm:, IEEE Trans. Commun, Vol. COM-35, Pages 877–87.

    Google Scholar 

  • Raghuveer M.R., Nikias C.L. (1985), Bispectrum Estimation: A Parameteric Approach, IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. ASSP-33, No. 5, Pages 35–48.

    Google Scholar 

  • Rosenblatt M. (1985), Stationary Sequences and Random Fields, Birkhauser, Boston, Mass.

    Book  MATH  Google Scholar 

  • Spencer P.S, Rayner P.J.W (1990), Separation of Stationary and Time-Varying Systems and Its Applications to the Restoration of Gramophone Recordings, Ph.D. Thesis Cambridge Universoty Engineering Department, Cambridge UK.

    Google Scholar 

  • Stockham T. G., Cannon T. M., Ingebretsen R.B (1975), Blind Deconvolutiopn Through Digital Signal Processing, IEEE Proc. Vol.63, No 4, Pages 678–92.

    Article  Google Scholar 

  • Qureshi S. U. (1985), Adaptive Equalisation Proceedings of the IEEE, Vol 73, No. 9, Pages 1349–87.

    Google Scholar 

  • Ungerboeck G. (1972), Theory on the Speed of Convergence in Adaptive Equalisers for Digital Communication, IBM J. Res. Dev., Vol. 16, Pages 546–55.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 John Wiley & Sons Ltd. and B.G. Teubner

About this chapter

Cite this chapter

Vaseghi, S.V. (1996). Blind Deconvolution and Channel Equalisation. In: Advanced Signal Processing and Digital Noise Reduction. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-92773-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-92773-6_14

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-92774-3

  • Online ISBN: 978-3-322-92773-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics