Skip to main content

Aufnahme, Transport und Speicherung eines essentiellen Elements: Das Beispiel Eisen

  • Chapter
Bioanorganische Chemie

Part of the book series: Teubner Studienbücher Chemie ((TSBC))

  • 400 Accesses

Zusammenfassung

Die Beschreibung der Struktur sowie der physiologischen Funktion von Metallzentren in Enzymen oder Proteinen hat in der bioanorganischen Chemie immer einen breiten Raum eingenommen. Zwischen der allgemein feststellbaren Häufigkeit eines Elements im Organismus (vgl. Kap. 2.1) und der spezifischen Funktion, z.B. in einem Enzym, stehen jedoch komplexe, weil notwendigerweise selektive und kontrollierte Mechanismen für Aufnahme, Transport, Speicherung und gezielte Übergabe des Elements, etwa an das dafür vorgesehene Apoprotein, unter zeitlich und räumlich genau definierten physiologischen Bedingungen. Auf diesen schwer zugänglichen Aspekt der Zeit- und Ortsabhängigkeit bioanorganischer Reaktionen im konkreten Organismus hat vor allem Williams in mehreren Artikeln hingewiesen.

“Despite their fundamental role in processes of signaling, homeostasis, and cytotoxicity little detailed information is available on the mechanisms whereby metal ions enter eukaryotic cells. Exceptions include the uptake of Fe... and the permeation of Ca2+ through Ca channels.”

D.M. Templeton J. Biot Chem. 265 (1990) 21764

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • R.J.P. Williams, Pure Appl. Chem. 55 (1983) 1089: Inorganic elements in biological space and time

    Google Scholar 

  • R.J.P. Williams, Coord. Chem. Rev.100 (1990) 573: Bio-inorganic chemistry: Its conceptual evolution

    Google Scholar 

  • G. Winkelmann, D. Van Der Helm, J.B. Neilands (Hrsg.): Iron Transport in Microbes, Plants and Animals, VCH, Weinheim, 1987

    Google Scholar 

  • T.M. Loehr (Hrsg.): Iron Carriers and Iron Proteins, VCH, Weinheim, 1989

    Google Scholar 

  • W. Schneider, Chimia 42 (1988) 9: Iron hydrolysis and the biochemistry of iron - The interplay of hydroxide and biogenic ligands

    Google Scholar 

  • R.R. Crichton, R.J. Ward, Biochem. 31 (1992) 11255: Iron metabolism - New perspectives in view

    Google Scholar 

  • R.R. Crichton: Inorganic Biochemistry of Iron Metabolism, Ellis Norwood, New York, 1991

    Google Scholar 

  • B. Halliwell, J.M.C. Gurreridge, Trends Biochem. Sci. 11 (1986) 372: Iron and free radical reactions: Two aspects of antioxidant protection

    Google Scholar 

  • E.D. Letendre, Trends Biochem. Sci. (1985) 166: The importance of iron in the pathogenesis of infection and neoplasia

    Google Scholar 

  • N.S. Scrimshaw, Sci. Am. 265(4) (1991) 24: Iron deficiency

    Google Scholar 

  • S. Singh, Chem. Ind. (London) (1994) 453: Therapeutically useful iron chelators

    Google Scholar 

  • K.N. Raymond, G. Moller, B.F. Matzanke, Top. Curr. Chem. 123 (1984) 49: Cornplexation of iron by siderophores. A review of their solution and structural chemistry and biological functions

    Google Scholar 

  • T.B. Karpishin, T.M. Dewey, K.N. Raymond, J. Am. Chem. Soc. 115 (1993) 1842: The vanadium(IV) enterobactin complex: Structural, spectroscopic, and electrochemical characterization

    Google Scholar 

  • H. Bickel, G.E. Hall, W. Keller-Schierlein, V. Prelog, E.Vischer, A. WETTSTEIN, HeIv. Chim. Acta 43 (1960) 2129: Über die Konstitution von Fenioxamin B

    Google Scholar 

  • F. VOGTLE: Supramolekulare Chemie, 2. Auflage, Teubner, Stuttgart, 1992

    Google Scholar 

  • K.N. Raymond, M.E. Cass, S.L. Evans, Pure Appl. Chem. 59 (1987) 771: Metal sequestering agents in bioinorganic chemistry: Enterobactin mediated iron transport in E. coli and biomimetic applications

    Google Scholar 

  • R.T. Reid, D.H. Live, D.J. Faulkner, A. Butler, Nature (London) 366 (1993) 455: A siderophore from a marine bacterium with an exceptional ferric ion affinity constant

    Google Scholar 

  • Y. Mino, T. Ishida, N. OTA, M. Inoue, K. Nomoto, T. Takemoto, H. Tanaka, Y. Sugiura, J. Am. Chem. Soc. 105 (1983) 4671: Mugineic acid-iron(111) complex and its structurally analoguous cobalt(lll) complex: Characterization and implication for absorption and transport of iron in gramineous plants

    Google Scholar 

  • B.F. Anderson, H.M. Baker, G.E. Norris D.W. Rice, E.N. Baker, J. Mol. Biol. 209 (1989) 711: Structure of human lactoferrin: Crystallographic structure analysis and refinement at 2.8 A resolution

    Google Scholar 

  • E.N. Baker, Adv. lnorg. Chem. 41 (1994) 389: Structure and reactivity of transferrins

    Google Scholar 

  • G.C. Ford, P.M. Harrison, D.W. Rice, J.M.A. Smith, A. Treffry, J.L. WHITE, J. YARN Phil. Trans. Roy. Soc. London B 304 (1984) 551: Ferritin: Design and formation of an iron-storage molecule

    Google Scholar 

  • E.C. Theil, Annu. Rev. Biochem. 56 (1987) 289: Ferritin: Structure, gene regulation, and cellular function in animals, plants, and microorganisms

    Google Scholar 

  • E.C. Theil in (u), S. 259: Ferritin: A general view of the protein, the iron-protein interface, and the iron core

    Google Scholar 

  • T.G. ST. Pierre, J. Webb, S. Mann in S. Mann, J. Webb, R.J.P. Williams (Hrsg.): Biomineralization,VCH, Weinheim, 1989: Fenitin and hemosiderin: Structural and magnetic studies of the iron core

    Google Scholar 

  • S.J.A. Fatemi, F.H.A. Kadir, D.J. Williamson, G.R. Moore, Adv. lnorg. Chem. 36 (1991) 67: The uptake, storage, and mobilization of iron and aluminum in biology

    Google Scholar 

  • N.D. Chasteen, C.P. Thompson, D.M. Martin in (p), S. 278: The release of iron from transfenin. An overview

    Google Scholar 

  • J.M.A. Smith, R.F.D. Stansfield, G.C. Ford, J.L. White, P.M. Harrison in (h), Vol. 65,1988, S. 1083: A molecular model for the quartemary structure of ferritin

    Google Scholar 

  • R.A. Eggleton, R.W. Fitzpatrick, Clays Clay Miner. 36 (1988) 111: New data and a revised structural model for ferrihydrite

    Google Scholar 

  • K.S. Hagen, Angew. Chem. 104 (1992) 1036: Modellverbindungen für die EisenSauerstoff-Aggregation and die Biomineralisation

    Google Scholar 

  • T.G. ST. Pierre, K.-S. Kim, J. Webb, S. Mann, D.P.E. Dickson, Inorg. Chem. 29 (1990) 1870: Biomineralization of iron: MasseauER spectroscopy and electron microscopy of ferritin cores from the chiton Acanthopleura hirtosa and the limpet Patella laticostata

    Google Scholar 

  • R. Dagani, Chem. Eng. News, 23. November (1992) 18: Nanostructured materials promise the advance range of technologies

    Google Scholar 

  • F. Meldrum, B.R. Heywood, S. Mann, Science 257 (1992) 522: Magnetoferritin: In vitro synthesis of a novel magnetic protein

    Google Scholar 

  • C.M. Flynn, Chem. Rev. 84 (1984) 31: Hydrolysis of inorganic iron(Ill) salts

    Google Scholar 

  • A.K. Powell, S.L. Heath, Comments Inorg. Chem. 15 (1994) 255: Polyiron(lll) oxyhydroxide clusters: The role of iron(Ill) hydrolysis and mineralization in nature

    Google Scholar 

  • P.M. Harrison, G.C. Ford, D.W. Rice, J.M.A. Smith, A. Treffry, J.L. WHITE in (p), S. 268: The three-dimensional structure of apoferritin: A framework controlling ferritin ‘s iron storage and release

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 B. G. Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden

About this chapter

Cite this chapter

Kaim, W., Schwederski, B. (2004). Aufnahme, Transport und Speicherung eines essentiellen Elements: Das Beispiel Eisen. In: Bioanorganische Chemie. Teubner Studienbücher Chemie. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-92714-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-92714-9_8

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-519-23505-7

  • Online ISBN: 978-3-322-92714-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics