Skip to main content

Geometrische Algorithmen

  • Chapter
Datenstrukturen und Algorithmen

Part of the book series: Leitfäden und Monographien der Informatik ((LMI))

  • 63 Accesses

Zusammenfassung

In diesem Kapitel betrachten wir Algorithmen und Datenstrukturen zur Lösung geometrischer Probleme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturhinweise

  • Shamos, M.I. [ 1975 ]. Problems in Computational Geometry. Unveröffentlichtes Manuskript.

    Google Scholar 

  • Shamos, M.I. [ 1978 ]. Computational Geometry. Ph. D. Thesis, Dept. of Computer Science, Yale University.

    Google Scholar 

  • Edelsbrunner, H., und J. van Leeuwen [ 1983 ]. Multidimensional Data Structures and Algorithms. A Bibliography. Technische Universität Graz, Institute für Informationsverarbeitung, Graz, Österreich, Report F 104.

    Google Scholar 

  • Edelsbrunner, H. [ 1988 ]. A Bibliography in Computational Geometry. Dept. of Computer Science, University of Illinois at Urbana Champaign, Urbana, Illinois, USA.

    Google Scholar 

  • Lee, D.T., und F.P. Preparata [ 1984 ]. Computational Geometry–A Survey. IEEE Transactions on Computers C-33, 1072–1101.

    Google Scholar 

  • Einführungen in die algorithmische Geometrie werden in den Büchern von

    Google Scholar 

  • Mehlhorn, K. [ 1984c ]. Data Structures and Algorithms 3: Multi-dimensional Searching and Computational Geometry. Springer-Verlag, Berlin.

    Google Scholar 

  • Preparata, F.P., und M.I. Shamos [ 1985 ]. Computational Geometry. An Introduction. Springer-Verlag, Berlin.

    Google Scholar 

  • Edelsbrunner, H. [ 1987 ]. Algorithms in Combinatorial Geometry. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Ottmann, T., und P. Widmayer [ 1990 ]. Algorithmen und Datenstrukturen. BI-Wissenschaftsverlag, Mannheim.

    MATH  Google Scholar 

  • Bentley, J.L., und T. Ottmann [ 1979 ]. Algorithms for Reporting and Counting Geometric Intersections. IEEE Transactions on Computers C-28, 643–647.

    Google Scholar 

  • Ottmann, T., und P. Widmayer [ 1982 ]. On the Placement of Line Segments into a Skeleton Structure. Universität Karlsruhe, Institut für Angewandte Informatik und Formale Beschreibungsverfahren, Report 114.

    Google Scholar 

  • Bentley, J.L., und D. Wood [ 1980 ]. An Optimal Worst-Case Algorithm for Reporting Intersections of Rectangles. IEEE Transactions on Computers C-29, 571–577.

    Google Scholar 

  • Bayer, R., und K. Unterauer [ 1977 ]. Prefix-B-Trees. ACM Transactions on Database Systems 2, 11–26.

    Article  Google Scholar 

  • van Leeuwen, J., und D. Wood [ 1981 ]. The Measure Problem for Rectangular Ranges in d-Space. Journal of Algorithms 2, 282–300.

    Article  MathSciNet  MATH  Google Scholar 

  • Bentley, J.L. [ 1977 ]. Solutions to Klee’s Rectangle Problems. Carnegie-Mellon University, Dept. of Computer Science, Manuskript.

    Google Scholar 

  • van Leeuwen, J., und D. Wood [ 1981 ]. The Measure Problem for Rectangular Ranges in d-Space. Journal of Algorithms 2, 282–300.

    Article  MathSciNet  MATH  Google Scholar 

  • Güting, R.H., und D. Wood [ 1984 ]. Finding Rectangle Intersections by Divide-andConquer. IEEE Transactions on Computers C-33, 671–675.

    Google Scholar 

  • Güting, R.H., und W. Schilling [ 1987 ]. A Practical Divide-and-Conquer Algorithm for the Rectangle Intersection Problem. Information Sciences 42, 95–112.

    Article  MathSciNet  MATH  Google Scholar 

  • Outing, R.H. [ 1984b ]. Optimal Divide-and-Conquer to Compute Measure and Contour for a Set of Iso-Rectangles. Acta Informatica 21, 271–291.

    Article  MathSciNet  Google Scholar 

  • Güting, R.H. [ 1985 ]. Divide-and-Conquer in Planar Geometry. International Journal of Computer Mathematics 18, 247–263.

    Article  Google Scholar 

  • Güting, R.H., und W. Schilling [ 1987 ]. A Practical Divide-and-Conquer Algorithm for the Rectangle Intersection Problem. Information Sciences 42, 95–112.

    Article  MathSciNet  MATH  Google Scholar 

  • Lipski, W., und F.P. Preparata [ 1980 ]. Finding the Contour of a Union of Iso-Oriented Rectangles. Journal of Algorithms 1, 235–246.

    Article  MathSciNet  Google Scholar 

  • Güting, R.H. [ 1984a ]. An Optimal Contour Algorithm for Iso-Oriented Rectangles. Journal of Algorithms 5, 303–326.

    Article  MathSciNet  MATH  Google Scholar 

  • Bentley, J.L. [ 1979 ]. Decomposable Searching Problems. Information Processing Letters 8, 244–251.

    Article  MathSciNet  MATH  Google Scholar 

  • Edelsbrunner, H. [ 1980 ]. Dynamic Data Structures for Orthogonal Intersection Queries. Technische Universität Graz, Institute für Informationsverarbeitung, Graz, Österreich, Report F 59.

    Google Scholar 

  • Edelsbrunner, H. [ 1983 ]. A New Approach to Rectangle Intersections. International Journal of Computer Mathematics 13, 209–229.

    Article  MathSciNet  MATH  Google Scholar 

  • Edelsbrunner, H. [ 1980 ]. Dynamic Data Structures for Orthogonal Intersection Queries. Technische Universität Graz, Institute für Informationsverarbeitung, Graz, Österreich, Report F 59.

    Google Scholar 

  • Bentley, J.L. [ 1979 ]. Decomposable Searching Problems. Information Processing Letters 8, 244–251.

    Article  MathSciNet  MATH  Google Scholar 

  • Six, H.W., und D. Wood [ 1982 ]. Counting and Reporting Intersections of d-Ranges. IEEE Transactions on Computers C-31, 181–187.

    Google Scholar 

  • Edelsbrunner, H. [ 1980 ]. Dynamic Data Structures for Orthogonal Intersection Queries. Technische Universität Graz, Institute für Informationsverarbeitung, Graz, Österreich, Report F 59.

    Google Scholar 

  • Edelsbrunner, H., und H.A. Maurer [ 1981 ]. On the Intersection of Orthogonal Objects. Information Processing Letters 13, 177–181.

    Article  MathSciNet  Google Scholar 

  • McCreight, E.M. [ 1985 ]. Priority Search Trees. SIAM Journal on Computing 14, 257276.

    Google Scholar 

  • Bentley, J.L., und T. Ottmann [ 1979 ]. Algorithms for Reporting and Counting Geometric Intersections. IEEE Transactions on Computers C-28, 643–647.

    Google Scholar 

  • Chazelle, B.M. [ 1986 ]. Reporting and Counting Segment Intersections. Journal of Computer and System Sciences, 156–182.

    Google Scholar 

  • Chazelle, B.M., und H. Edelsbrunner [ 1988 ]. An Optimal Algorithm for Intersecting Line Segments in the Plane. Proceedings of the 29th Annual Symposium on Foundations of Computer Science, White Plains, New York, 590–600.

    Google Scholar 

  • Ottmann, T., und P. Widmayer [ 1982 ]. On the Placement of Line Segments into a Skeleton Structure. Universität Karlsruhe, Institut für Angewandte Informatik und Formale Beschreibungsverfahren, Report 114.

    Google Scholar 

  • Ottmann, T., und P. Widmayer [ 1988 ]. Programmierung mit PASCAL. 4. Aufl., Teubner-Verlag, Stuttgart.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 B. G. Teubner Stuttgart

About this chapter

Cite this chapter

Güting, R.H. (1992). Geometrische Algorithmen. In: Datenstrukturen und Algorithmen. Leitfäden und Monographien der Informatik. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-92105-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-92105-5_7

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-519-02121-6

  • Online ISBN: 978-3-322-92105-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics